Dominating Sets in Triangulations on Surfaces

被引:18
|
作者
Honjo, Tatsuya [1 ]
Kawarabayashi, Ken-ichi [2 ]
Nakamoto, Atsuhiro [1 ]
机构
[1] Yokohama Natl Univ, Fac Educ & Human Sci, Dept Math, Yokohama, Kanagawa 2408501, Japan
[2] Natl Inst Informat, Principles Informat Res Div, Tokyo 1018430, Japan
关键词
dominating set; triangulation; projective plane; torus; Klein bottle; representativity; MINORS;
D O I
10.1002/jgt.20401
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and let S subset of V(G). We say that S is dominating in G if each vertex of G is in S or adjacent to a vertex in S. We show that every triangulation on the torus and the Klein bottle with n vertices has a dominating set of cardinality at most n/3. Moreover, we show that the same conclusion holds for a triangulation on any non-spherical surface with sufficiently large representativity. These results generalize that for plane triangulations proved by Matheson and Tarjan (European J Combin 17 (1996), 565-568), and solve a conjecture by Plummer (Private Communication). (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 17-30, 2010
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [41] Super Dominating Sets in Graphs
    Lemanska, M.
    Swaminathan, V.
    Venkatakrishnan, Y. B.
    Zuazua, R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (03) : 353 - 357
  • [42] Bipartite dominating sets in hypercubes
    Ramras, M
    ARS COMBINATORIA, 2005, 77 : 169 - 180
  • [43] DOMINATING SETS AND EIGENVALUES OF GRAPHS
    ROWLINSON, P
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 248 - 254
  • [44] Strongly dominating sets of reals
    Deco, Michal
    Repicky, Miroslav
    ARCHIVE FOR MATHEMATICAL LOGIC, 2013, 52 (7-8) : 827 - 846
  • [45] Dominating sets in directed graphs
    Pang, Chaoyi
    Zhang, Rui
    Zhang, Qing
    Wang, Junhu
    INFORMATION SCIENCES, 2010, 180 (19) : 3647 - 3652
  • [46] Dominating sets in web graphs
    Cooper, C
    Klasing, R
    Zito, M
    ALGORITHMS AND MODELS FOR THE WEB-GRAPHS, PROCEEDINGS, 2004, 3243 : 31 - 43
  • [47] Counting Minimal Dominating Sets
    Kante, Mamadou Moustapha
    Uno, Takeaki
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017), 2017, 10185 : 332 - 346
  • [48] DOMINATING SETS IN PERFECT GRAPHS
    CORNEIL, DG
    STEWART, LK
    DISCRETE MATHEMATICS, 1990, 86 (1-3) : 145 - 164
  • [49] Eternal dominating sets in graphs
    School of Computing, University of North Florida, Jacksonville, FL 32224-2669, United States
    不详
    J. Comb. Math. Comb. Comp., 2009, (97-111): : 97 - 111
  • [50] Strongly dominating sets of reals
    Michal Dečo
    Miroslav Repický
    Archive for Mathematical Logic, 2013, 52 : 827 - 846