Efficient Uncertainty Quantification in Stochastic Economic Dispatch

被引:38
|
作者
Safta, Cosmin [1 ]
Chen, Richard L. -Y. [1 ]
Najm, Habib N. [1 ]
Pinar, Ali [1 ]
Watson, Jean-Paul [1 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94551 USA
基金
美国能源部;
关键词
Karhunen-Loeve expansion; Monte Carlo sampling; polynomial chaos expansion; stochastic economic dispatch; PARTIAL-DIFFERENTIAL-EQUATIONS; WIND-SPEED PREDICTION; UNIT COMMITMENT; POLYNOMIAL CHAOS; COLLOCATION METHOD; MODEL; FORECASTS;
D O I
10.1109/TPWRS.2016.2615334
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stochastic economic dispatch models address uncertainties in forecasts of renewable generation output by considering a finite number of realizations drawn from a stochastic process model, typically via Monte Carlo sampling. Accurate evaluations of expectations or higher order moments for quantities of interest, e.g., generating cost, can require a prohibitively large number of samples. We propose an alternative to Monte Carlo sampling based on polynomial chaos expansions. These representations enable efficient and accurate propagation of uncertainties in model parameters, using sparse quadrature methods. We also use Karhunen-Lo` eve expansions for efficient representation of uncertain renewable energy generation that follows geographical and temporal correlations derived from historical data at each wind farm. Considering expected production cost, we demonstrate that the proposed approach can yield several orders of magnitude reduction in computational cost for solving stochastic economic dispatch relative toMonte Carlo sampling, for a given target error threshold.
引用
收藏
页码:2535 / 2546
页数:12
相关论文
共 50 条
  • [31] A Frequency-Constrained Stochastic Economic Dispatch Model
    Lee, Yen-Yu
    Baldick, Ross
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (03) : 2301 - 2312
  • [32] Stochastic Preventive Security-Constrained Economic Dispatch
    Mariano Paniagua-Contreras, J.
    Gutierrez, G.
    Tovar Hernandez, J. H.
    Hinojosa, Victor H.
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (01) : 171 - 179
  • [33] Stochastic economic dispatch strategy based on quantile regression
    Zeng, Linjun
    Xu, Jiazhu
    Liu, Yuxing
    Li, Chang
    Wu, Min
    Wen, Ming
    Xiao, Hui
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [34] Quantifying the Effect of Natural Gas Price Uncertainty on Economic Dispatch Cost Uncertainty
    Hu, Dan
    Ryan, Sarah M.
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [35] Stochastic Economic Dispatch with Advanced Polynomial Chaos Expansion
    Rawal, Keerti
    Ahmad, Aijaz
    IFAC PAPERSONLINE, 2024, 57 : 155 - 160
  • [36] Economic dispatch using stochastic whale optimization algorithm
    Mohamed, FatmaAlzahra
    Abdel-Nasser, Mohamed
    Mahmoud, Karar
    Kamel, Salah
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN COMPUTER ENGINEERING (ITCE' 2018), 2018, : 19 - 24
  • [37] Uncertainty quantification for monotone stochastic degradation models
    Chen, Piao
    Ye, Zhi-Sheng
    JOURNAL OF QUALITY TECHNOLOGY, 2018, 50 (02) : 207 - 219
  • [38] Nonparametric Uncertainty Quantification for Stochastic Gradient Flows
    Berry, Tyrus
    Harlim, John
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 484 - 508
  • [39] Suborbital Reentry Uncertainty Quantification and Stochastic Optimization
    Berning, Andrew, Jr.
    Kehlenbeck, Andrew
    Kolmanovsky, Ilya
    Girard, Anouck
    2020 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2020, : 594 - 599
  • [40] Stochastic approaches to uncertainty quantification in CFD simulations
    Lionel Mathelin
    M. Yousuff Hussaini
    Thomas A. Zang
    Numerical Algorithms, 2005, 38 : 209 - 236