Robustness of deepest regression

被引:29
|
作者
Van Aelst, S [1 ]
Rousseeuw, PJ [1 ]
机构
[1] Univ Instelling Antwerp, Dept Math & Comp Sci, B-2610 Wilrijk, Belgium
关键词
breakdown value; influence function; regression depth;
D O I
10.1006/jmva.1999.1870
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we investigate the robustness properties of the deepest regression, a method for linear regression introduced by Rousseeuw and Hubert [6]. We show that the deepest regression functional is Fisher-consistent fur the conditional median, and has a breakdown value of 1/3 in all dimensions. We also derive its influence function, and compare it with sensitivity functions. (C) 2000 Academic Press.
引用
收藏
页码:82 / 106
页数:25
相关论文
共 50 条
  • [31] Robustness analysis of a maximum correntropy framework for linear regression
    Bako, Laurent
    AUTOMATICA, 2018, 87 : 218 - 225
  • [32] Robustness of Kernel Based Regression: Influence and Weight Functions
    De Brabanter, Kris
    De Brabanter, Jos
    Suykens, Johan A. K.
    Vandewalle, Joos
    De Moor, Bart
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [33] ON THE ROBUSTNESS OF SHRINKAGE PREDICTION IN REGRESSION TO A CHANGE IN THE LINEAR RELATIONSHIP
    JONES, MC
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1988, 50 : 168 - 174
  • [34] Bouligand derivatives and robustness of support vector machines for regression
    Christmann, Andreas
    Van Messem, Arnout
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 915 - 936
  • [35] Bayesian robustness to outliers in linear regression and ratio estimation
    Desgagne, Alain
    Gagnon, Philippe
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (02) : 205 - 221
  • [36] Robustness of reweighted Least Squares Kernel Based Regression
    Debruyne, Michiel
    Christmann, Andreas
    Hubert, Mia
    Suykens, Johan A. K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (02) : 447 - 463
  • [37] Bouligand derivatives and robustness of support vector machines for regression
    Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany
    不详
    J. Mach. Learn. Res., 2008, (915-936):
  • [38] Classical and Bayesian inference robustness in multivariate regression models
    Fernandez, C
    Osiewalski, J
    Steel, MFJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1434 - 1444
  • [39] Using deepest regression method for optimization of fluidized bed granulation on semi-full scale
    Rambali, B
    Van Aelst, S
    Baert, L
    Massart, DL
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2003, 258 (1-2) : 85 - 94
  • [40] THE DEEPEST AND THE SKIN
    Caruso, Luigi de Carvalho
    IPOTESI-REVISTA DE ESTUDOS LITERARIOS, 2022, 26 (01): : 222 - 222