Robustness of deepest regression

被引:29
|
作者
Van Aelst, S [1 ]
Rousseeuw, PJ [1 ]
机构
[1] Univ Instelling Antwerp, Dept Math & Comp Sci, B-2610 Wilrijk, Belgium
关键词
breakdown value; influence function; regression depth;
D O I
10.1006/jmva.1999.1870
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we investigate the robustness properties of the deepest regression, a method for linear regression introduced by Rousseeuw and Hubert [6]. We show that the deepest regression functional is Fisher-consistent fur the conditional median, and has a breakdown value of 1/3 in all dimensions. We also derive its influence function, and compare it with sensitivity functions. (C) 2000 Academic Press.
引用
收藏
页码:82 / 106
页数:25
相关论文
共 50 条
  • [1] Robustness of the deepest projection regression functional
    Yijun Zuo
    Statistical Papers, 2021, 62 : 1167 - 1193
  • [2] Robustness of the deepest projection regression functional
    Zuo, Yijun
    STATISTICAL PAPERS, 2021, 62 (03) : 1167 - 1193
  • [3] The deepest regression method
    Van Aelst, S
    Rousseeuw, PJ
    Hubert, M
    Struyf, A
    JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 81 (01) : 138 - 166
  • [4] Deepest regression in analytical chemistry
    Rousseeuw, PJ
    Van Aelst, S
    Rambali, B
    Smeyers-Verbeke, J
    ANALYTICA CHIMICA ACTA, 2001, 446 (1-2) : 245 - 256
  • [5] Deepest points and least deep points: Robustness and outliers with MZE
    Becker, C
    Scholz, SP
    FROM DATA AND INFORMATION ANALYSIS TO KNOWLEDGE ENGINEERING, 2006, : 254 - +
  • [6] On the Robustness and Generalization of Cauchy Regression
    Liu, Tongliang
    Tao, Dacheng
    2014 4TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2014, : 100 - 105
  • [7] Robustness of random forests for regression
    Roy, Marie-Helene
    Larocque, Denis
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (04) : 993 - 1006
  • [8] ON THE ADVERSARIAL ROBUSTNESS OF LINEAR REGRESSION
    Li, Fuwei
    Lai, Lifeng
    Cui, Shuguang
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [9] On Robustness of Principal Component Regression
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [10] On Robustness of Principal Component Regression
    Agarwal, Anish
    Shah, Devavrat
    Shen, Dennis
    Song, Dogyoon
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (536) : 1731 - 1745