On a multiple Hilbert-type integral inequality involving the upper limit functions

被引:0
|
作者
Zhong, Jianhua [1 ]
Yang, Bicheng [1 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 51003, Guangdong, Peoples R China
关键词
Weight function; Hilbert-type integral inequality; Upper limit function; Parameter; Gamma function;
D O I
10.1186/s13660-021-02551-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying the weight functions, the idea of introducing parameters and the technique of real analysis, a new multiple Hilbert-type integral inequality involving the upper limit functions is given. The constant factor related to the gamma function is proved to be the best possible in a condition. A corollary about the case of the nonhomogeneous kernel and some particular inequalities are obtained.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Multidimensional Integral Inequality Related to Hilbert-Type Inequality
    Adiyasuren, Vandanjav
    Batbold, Tserendorj
    Sawano, Yoshihiro
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 3837 - 3848
  • [22] A Hilbert-type integral inequality on the fractal space
    Liu, Qiong
    Chen, Dazhao
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (10) : 772 - 780
  • [23] Equivalent conditions of a multiple Hilbert-Type integral inequality with the nonhomogeneous kernel
    Rassias, Michael Th
    Yang, Bicheng
    Raigorodskii, Andrei
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [24] A reverse Hardy–Hilbert-type integral inequality involving one derivative function
    Qian Chen
    Bicheng Yang
    Journal of Inequalities and Applications, 2020
  • [25] A New Hilbert-Type Integral Inequality with Parameters
    Xue Mei GAOMing Zhe GAO Department of Mathematics Computer ScienceNormal College of Jishou UniversityHunan PRChina
    数学研究与评论, 2011, 31 (03) : 467 - 473
  • [26] Equivalent conditions of a multiple Hilbert-Type integral inequality with the nonhomogeneous kernel
    Michael Th. Rassias
    Bicheng Yang
    Andrei Raigorodskii
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [28] A multiple Hilbert-type integral inequality with a non-homogeneous kernel
    Huang, Qiliang
    Yang, Bicheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [29] A multiple Hilbert-type integral inequality with a non-homogeneous kernel
    Qiliang Huang
    Bicheng Yang
    Journal of Inequalities and Applications, 2013
  • [30] ON A NEW HALF-DISCRETE HILBERT-TYPE INEQUALITY WITH THE MULTIPLE UPPER LIMIT FUNCTION AND THE PARTIAL SUMS
    Wang, Aizhen
    Yong, Hong
    Yang, Bicheng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (02): : 814 - 830