Synchronization of Incommensurate Fractional-Order Chaotic Systems with Input Nonlinearities Using a Fuzzy Variable-Structure Control

被引:0
|
作者
Boubellouta, Amina [1 ]
Boulkroune, Abdesselem [1 ]
机构
[1] Univ Jijel, LAJ, BP 98, Ouled Aissa, Jijel, Algeria
关键词
Generalized projective synchronization; Fuzzy adaptive control; Fractional-order variable-structure control; Incommensurate fractional-order chaotic systems; SLIDING MODE CONTROL; H-INFINITY SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; DYNAMICS; DESIGN;
D O I
10.1007/978-3-319-97816-1_10
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This research work addresses the fuzzy adaptive controller design for a generalized projective synchronization (GPS) of incommensurate fractional-order chaotic systems with input nonlinearities. The considered master-slave systems are with different fractional-orders, uncertain models, unknown bounded disturbances and non-identical form. The suggested controller includes two main terms, namely, a fuzzy adaptive control and a fractional-order variable structure control. The fuzzy logic systems are exploited for approximating the system uncertainties. A Lyapunov approach is employed for determining the parameter adaptation laws and proving the stability of the closed-loop system. At last, simulation results are given to demonstrate the validity of the proposed GPS approach.
引用
收藏
页码:128 / 142
页数:15
相关论文
共 50 条
  • [31] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242
  • [32] SYNCHRONIZATION OF CHAOTIC FRACTIONAL-ORDER SYSTEMS VIA LINEAR CONTROL
    Odibat, Zaid M.
    Corson, Nathalie
    Aziz-Alaoui, M. A.
    Bertelle, Cyrille
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 81 - 97
  • [33] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [34] Chaotic synchronization for a class of fractional-order chaotic systems
    Zhou Ping
    CHINESE PHYSICS, 2007, 16 (05): : 1263 - 1266
  • [35] Chaotic synchronization for a class of fractional-order chaotic systems
    Institute for Nonlinear Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    Chin. Phys., 2007, 5 (1263-1266):
  • [36] Passive Synchronization Control for Integer-order Chaotic Systems and Fractional-order Chaotic Systems
    Shao Keyong
    Bu Ruixuan
    Gao Wang
    Wang Qiutong
    Zhang Yi
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1115 - 1119
  • [37] Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection
    Delshad, Saleh Sayyad
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammadtaghi Hamidi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) : 3815 - 3824
  • [38] Finite-time projective synchronization of fractional-order chaotic systems via soft variable structure control
    Keyong Shao
    Haoxuan Guo
    Feng Han
    Journal of Mechanical Science and Technology, 2020, 34 : 369 - 376
  • [39] Finite-time projective synchronization of fractional-order chaotic systems via soft variable structure control
    Shao, Keyong
    Guo, Haoxuan
    Han, Feng
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (01) : 369 - 376
  • [40] Generalized Function Projective Synchronization of Incommensurate Fractional-Order Chaotic Systems with Inputs Saturation
    Zhou, Yan
    Wang, Hongxing
    Liu, Heng
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (03) : 823 - 836