Optimized Support Vector Regression Models for Short Term Solar Radiation Forecasting in Smart Environment

被引:0
|
作者
Sreekumar, Sreenu [1 ]
Sharma, Kailash Chand [1 ]
Bhakar, Rohit [1 ]
机构
[1] Malaviya Natl Inst Technol, Elect Engn Dept, Jaipur 302004, Rajasthan, India
关键词
Support Vector Regression; Mean Average Percentage Error; Genetic Algorithm; Particle Swarm Optimization; Solar Power;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High penetration of intermittent and uncontrollable renewable energy sources necessitates smarter and fast grid control mechanisms for maintaining system security. Evolution of smarter grids in such environment requires accurate short term power forecasting for optimum power dispatch, spinning reserve planning, stability analysis and security evaluation. A variety of models, such as numerical weather prediction, artificial neural network, machine learning algorithms and Bayesian approaches are used for solar radiation forecasting. Processing time of these models is quite high for an accurate prediction. This paper proposes a Support Vector Regression (SVR) model without hyper parameter optimization and two optimized SVR models, support vector regression with optimized hyper parameters using Genetic Algorithm (SVRGA) as well as Particle Swarm Optimization (SVRPSO) for solar radiation forecasting. These models use similar day approach for prediction considering that position of sun and earth is same on a similar day in previous years, albeit with the difference of cloud cover, cloud movement, wind speed and temperature. When dependent factors on similar day of previous year remain same, solar radiation would be similar to previous years similar day values. Results obtained from these models show that these models have strong potential towards short term prediction, and out of these SVRPSO gives better results compared to SVR and SVRGA.
引用
收藏
页码:1929 / 1932
页数:4
相关论文
共 50 条
  • [31] Research on Natural Gas Short-Term Load Forecasting Based on Support Vector Regression
    刘涵
    刘丁
    郑岗
    梁炎明
    Chinese Journal of Chemical Engineering, 2004, (05) : 140 - 144
  • [32] Integrating KPCA and Locally Weighted Support Vector Regression for Short-Term Load Forecasting
    Elattar, E. E.
    Goulermas, J. Y.
    Wu, Q. H.
    MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, 2010, : 1528 - 1533
  • [33] Research on natural gas short-term load forecasting based on support vector regression
    Liu, H
    Liu, D
    Zheng, G
    Liang, YM
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2004, 12 (05) : 732 - 736
  • [34] Short-term Load Forecasting Based on Time Series Reconstruction and Support Vector Regression
    Chen, Wenying
    Chen, Xingying
    Liao, Yingchen
    Wang, Gang
    Yao, Jianguo
    Chen, Kai
    2013 IEEE INTERNATIONAL CONFERENCE OF IEEE REGION 10 (TENCON), 2013,
  • [35] Short Term Wind Power Prediction Using Evolutionary Optimized Local Support Vector Regression
    Elattar, E. E.
    2011 2ND IEEE PES INTERNATIONAL CONFERENCE AND EXHIBITION ON INNOVATIVE SMART GRID TECHNOLOGIES (ISGT EUROPE), 2011,
  • [36] Construction of Training Sample in a Support Vector Regression Short-term Load Forecasting Model
    Jiao, Runhai
    Mo, Ruifang
    Lin, Biying
    Su, Chenjun
    2012 FIFTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2012), VOL 2, 2012, : 339 - 342
  • [37] Long Short-Term Memory Network and Support Vector Regression for Electrical Load Forecasting
    Imani, Maryam
    2019 5TH INTERNATIONAL CONFERENCE ON POWER GENERATION SYSTEMS AND RENEWABLE ENERGY TECHNOLOGIES (PGSRET-2019), 2019, : 359 - 364
  • [38] Very Short-Term Electricity Load Demand Forecasting Using Support Vector Regression
    Setiawan, Anthony
    Koprinska, Irena
    Agelidis, Vassilios G.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 3348 - +
  • [39] Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting
    Hong, Wei-Chiang
    Fan, Guo-Feng
    ENERGIES, 2019, 12 (06):
  • [40] A Comparative Study of Ensemble Support Vector Regression Methods for Short-term Load Forecasting
    Ye, Jianhua
    Yang, Li
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 139 - 143