A Fully Convolutional Neural Network for Wood Defect Location and Identification

被引:61
|
作者
He, Ting [1 ,2 ]
Liu, Ying [1 ]
Xu, Chengyi [1 ]
Zhou, Xiaolin [1 ]
Hu, Zhongkang [1 ]
Fan, Jianan [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Jiangsu, Peoples R China
[2] Huizhou Univ, Coll Elect Informat & Elect Engn, Huizhou 516000, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Deep learning; full convolutional neural network; transfer learning; wood defects detection; CLASSIFICATION; FUSION;
D O I
10.1109/ACCESS.2019.2937461
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Defect detection on solid wood surface has two main problems: (1) the real-time performance of the available methods are poor despite good detection accuracy, and (2) the defect extraction process is complicated. Here, we propose a mixed, fully convolutional neural network (Mix-FCN) to detect the location of wood defects and classify the types of defects from the wood surface images automatically. The images were collected first by a data acquisition device developed in our laboratory. We then employed TensorFlow and Python language to construct a VGG16 model. We used two kinds of datasets (dataset1 and dataset2) to maximize the limited, collected data and enable the Mix-FCN to converge rapidly during training. The weights of the filters in front of the Mix-FCN during training were initialized from the trained VGG16 model. The weights of the VGG16 net were learned by dataset1. Our model was trained, validated, and tested by dataset 2. Overall classification accuracy (OCA), pixel accuracy (PA), mean intersection over union, detection rate, missing alarm, false alarm rate, and precision were used to evaluate the network, and the performance was good based on the seven evaluation indicators. We achieved 99.14% OCA and 91.31% PA, and a batch of 50 images required only 0.368 s of detection time. Our proposed method has better accuracy and less detection time compared to the previous methods of wood detection.
引用
收藏
页码:123453 / 123462
页数:10
相关论文
共 50 条
  • [41] Dealing with Topological Information Within a Fully Convolutional Neural Network
    Decenciere, Etienne
    Velasco-Forero, Santiago
    Min, Fu
    Chen, Juanjuan
    Burdin, Helene
    Gauthier, Gervais
    Lay, Bruno
    Bornschloegl, Thomas
    Baldeweck, Therese
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2018, 2018, 11182 : 462 - 471
  • [42] A Convolutional Neural Network Fully Implemented on FPGA for Embedded Platforms
    Bettoni, Marco
    Urgese, Gianvito
    Kobayashi, Yuki
    Macii, Enrico
    Acquaviva, Andrea
    2017 FIRST NEW GENERATION OF CAS (NGCAS), 2017, : 49 - 52
  • [43] SEGMENTATION OF DERMOSCOPY IMAGES BASED ON FULLY CONVOLUTIONAL NEURAL NETWORK
    Deng, Zilin
    Fan, Haidi
    Xie, Fengying
    Cui, Yong
    Liu, Jie
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1732 - 1736
  • [44] SPNet: Shape Prediction Using a Fully Convolutional Neural Network
    Al Arif, S. M. Masudur Rahman
    Knapp, Karen
    Slabaugh, Greg
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 430 - 439
  • [45] Traffic Lane Detection using Fully Convolutional Neural Network
    Zang, Jinju
    Zhou, Wei
    Zhang, Guanwen
    Duan, Zhemin
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 305 - 311
  • [46] Hybrid Spiking Fully Convolutional Neural Network for Semantic Segmentation
    Zhang, Tao
    Xiang, Shuiying
    Liu, Wenzhuo
    Han, Yanan
    Guo, Xingxing
    Hao, Yue
    ELECTRONICS, 2023, 12 (17)
  • [47] Employing a Fully Convolutional Neural Network for Road Marking Detection
    Horita, Luiz Ricardo T.
    Grassi Junior, Valdir
    2017 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS) AND 2017 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), 2017,
  • [48] Fully hardware-implemented memristor convolutional neural network
    Peng Yao
    Huaqiang Wu
    Bin Gao
    Jianshi Tang
    Qingtian Zhang
    Wenqiang Zhang
    J. Joshua Yang
    He Qian
    Nature, 2020, 577 : 641 - 646
  • [49] Colorectal Polyp Segmentation Using A Fully Convolutional Neural Network
    Li, Qiaoliang
    Yang, Guangyao
    Chen, Zhewei
    Huang, Bin
    Chen, Liangliang
    Xu, Depeng
    Zhou, Xueying
    Zhong, Shi
    Zhang, Huisheng
    Wang, Tianfu
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [50] Fully automatic image colorization based on Convolutional Neural Network
    Varga, Domonkos
    Sziranyi, Tamas
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3691 - 3696