Studies on MOVPE growth of GaP epitaxial layer on Si(001) substrate and effects of annealing

被引:26
|
作者
Dixit, V. K. [1 ]
Ganguli, Tapas
Sharma, T. K.
Kumar, Ravi
Porwal, S.
Shukla, Vijay
Ingale, Alka
Tiwari, Pragya
Nath, A. K.
机构
[1] Ctr Adv Technol, Solid State Laser Div, Indore 452013, India
[2] Ctr Adv Technol, Laser Phys Appl Sect, Indore 452013, India
[3] Ctr Adv Technol, Synchrotron Utilizat & Mat Res Div, Indore 452013, India
关键词
annealing; ECV; HRXRD; photoluminescence; MOVPE; GaP/Si;
D O I
10.1016/j.jcrysgro.2006.03.060
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Growth of gallium phosphide layer on silicon substrate has been carried out using metal-organic vapor phase epitaxy. Epitaxial layers were grown at 845 degrees C with a V/III ratio of 100 and a growth rate of 1.7 A slat a reactor pressure of 30 mbar. The nominal thickness of the gallium phosphide epitaxial layer is similar to 600 nm as measured by cross-sectional scanning electron microscopy. Growth of gallium phosphide epilayer is confirmed by Raman spectra studies. High-resolution X-ray diffraction studies show that the epilayer is of single crystalline nature and structurally coherent with silicon substrate. It is also inferred from these measurements that the in- and out of plane strain arising from small mismatch confirms a relaxed epilayer. As-grown epilayer shows p-type behavior with a hole carrier density of similar to 1.2 x 10(18)cm(-3) and hole mobility 114 cm(-2)V s(-1) at room temperature. Annealing at 550 degrees C for 10 min shows significant improvements in crystalline quality of the epilayer. The annealed layer shows a reduced hole density (similar to 6.7 x 10(17)cm(-3)) and increased hole mobility (155 cm(-2) v s(-1)). (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:5 / 13
页数:9
相关论文
共 50 条
  • [21] MOVPE growth of GaN on Si substrate with 3C-SiC buffer layer
    Katagiri, Masayoshi
    Fang, Hao
    Miyake, Hideto
    Hiramatsu, Kazumasa
    Oku, Hidehiko
    Asamura, Hidetoshi
    Kawamura, Keisuke
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (05)
  • [22] Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate
    Kunert, B.
    Nemeth, I.
    Reinhard, S.
    Volz, K.
    Stolz, W.
    THIN SOLID FILMS, 2008, 517 (01) : 140 - 143
  • [23] EFFECTS OF SUBSTRATE MISORIENTATION ON HETEROEPITAXIAL GROWTH OF GAP ON SI
    IGARASHI, O
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1977, 16 (10) : 1865 - 1866
  • [24] STUDY ON THE MOLECULAR BEAM EPITAXIAL GROWTH OF SnO2 ON Si (001) SUBSTRATE
    Kaewsuwan, Dechmongkhon
    Wongpinit, Thipusa
    Euaruksakul, Chanan
    Chanlek, Narong
    Yimnirun, Rattikorn
    Rujirawat, Saroj
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2021, 28 (06):
  • [25] Epitaxial relationship of ZnO film with Si (001) substrate and its effect on growth and morphology
    Liu, Z. W.
    Sun, C. W.
    Gu, J. F.
    Zhang, Q. Y.
    APPLIED PHYSICS LETTERS, 2006, 88 (25)
  • [26] Single Crystalline GaN Epitaxial Layer Prepared on Nano-Patterned Si(001) Substrate
    Huang, C. C.
    Chang, S. J.
    Kuo, C. H.
    Wu, C. H.
    Ko, C. H.
    Wann, Clement H.
    Cheng, Y. C.
    Lin, W. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (06) : H626 - H629
  • [27] Hexagonal BN epitaxial growth on (0001) sapphire substrate by MOVPE
    Kobayashi, Y.
    Akasaka, T.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (23) : 5044 - 5047
  • [28] Nano epitaxial growth of GaAs on Si (001)
    Hsu, Chao-Wei
    Chen, Yung-Feng
    Su, Yan-Kuin
    APPLIED PHYSICS LETTERS, 2011, 99 (13)
  • [29] Epitaxial growth of Ge islands on Si(001)
    MedeirosRibeiro, G
    Ohlberg, D
    Kamins, T
    Bratkovski, A
    Williams, RS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 34 - PHYS
  • [30] Epitaxial Growth of Bi(111) on Si(001)
    Jnawali, G.
    Hattab, H.
    Bobisch, C. A.
    Bernhart, A.
    Zubkov, E.
    Deiter, C.
    Weisemoeller, T.
    Bertram, F.
    Wollschlager, J.
    Moller, R.
    Hoegen, M. Horn-von
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2009, 7 : 441 - 447