A dynamic gesture recognition and prediction system using the convexity approach

被引:30
|
作者
Barros, Pablo [1 ]
Maciel-Junior, Nestor T. [2 ]
Fernandes, Bruno J. T. [2 ]
Bezerra, Byron L. D. [2 ]
Fernandes, Sergio M. M. [2 ]
机构
[1] Univ Hamburg, Dept Informat, Knowledge Technol, Hamburg, Germany
[2] Univ Pernambuco, Escola Politecn Pernambuco, Recife, PE, Brazil
关键词
Gesture recognition; Computer vision; Features extraction; Gesture prediction; HUMAN-COMPUTER INTERACTION; HULL;
D O I
10.1016/j.cviu.2016.10.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several researchers around the world have studied gesture recognition, but most of the recent techniques fall in the curse of dimensionality and are not useful in real time environment. This study proposes a system for dynamic gesture recognition and prediction using an innovative feature extraction technique, called the Convexity Approach. The proposed method generates a smaller feature vector to describe the hand shape with a minimal amount of data. For dynamic gesture recognition and prediction, the system implements two independent modules based on Hidden Markov Models and Dynamic Time Warping. Two experiments, one for gesture recognition and another for prediction, are executed in two different datasets, the RPPDI Dynamic Gestures Dataset and the Cambridge Hand Data, and the results are showed and discussed. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [41] Review of dynamic gesture recognition
    Yuanyuan SHI
    Yunan LI
    Xiaolong FU
    Kaibin MIAO
    Qiguang MIAO
    虚拟现实与智能硬件(中英文), 2021, 3 (03) : 183 - 206
  • [42] A Dynamic Gesture Prediction System Based on The CLCS Feature Extraction
    Junior, Nestor T. M.
    Barros, Pablo V. A.
    Fernandes, Bruno J. T.
    Bezerra, Byron L. D.
    Fernandes, Sergio M. M.
    2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 501 - 506
  • [43] Dynamic Hand Gesture Recognition Using Electrical Impedance Tomography
    Li, Xiuyan
    Sun, Jianrui
    Wang, Qi
    Zhang, Ronghua
    Duan, Xiaojie
    Sun, Yukuan
    Wang, Jianming
    SENSORS, 2022, 22 (19)
  • [44] Medical gesture recognition using dynamic arc length warping
    Cifuentes, Jenny
    Minh Tu Pham
    Moreau, Richard
    Boulanger, Pierre
    Prieto, Flavio
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 52 : 162 - 170
  • [45] Dynamic gesture recognition using wireless signals with less disturbance
    Chen, Jiahui
    Li, Fan
    Chen, Huijie
    Yang, Song
    Wang, Yu
    PERSONAL AND UBIQUITOUS COMPUTING, 2019, 23 (01) : 17 - 27
  • [46] Human gesture recognition using a simplified dynamic Bayesian network
    Myung-Cheol Roh
    Seong-Whan Lee
    Multimedia Systems, 2015, 21 : 557 - 568
  • [47] Human gesture recognition using a simplified dynamic Bayesian network
    Roh, Myung-Cheol
    Lee, Seong-Whan
    MULTIMEDIA SYSTEMS, 2015, 21 (06) : 557 - 568
  • [48] Dynamic gesture recognition using wireless signals with less disturbance
    Jiahui Chen
    Fan Li
    Huijie Chen
    Song Yang
    Yu Wang
    Personal and Ubiquitous Computing, 2019, 23 : 17 - 27
  • [49] Dynamic Hand Gesture Recognition Using Hidden Markov Models
    Yang, Zhong
    Li, Yi
    Chen, Weidong
    Zheng, Yang
    PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 360 - 365
  • [50] Dynamic Gesture Recognition using 3D Trajectory
    Wang, Qianqian
    Xu, Yuan-Rong
    Bai, Xiao
    Xu, Dan
    Chen, Yen-Lun
    Wu, Xinyu
    2014 4TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2014, : 598 - 601