Binary codes from rectangular lattice graphs and permutation decoding

被引:7
|
作者
Key, J. D. [1 ]
Seneviratne, P. [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
D O I
10.1016/j.ejc.2005.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the binary codes obtained from the row span over the field F-2 of an adjacency matrix of the rectangular lattice graphs L-2 (m, n) for 3 <= m <= n and show that permutation decoding can be used for full error-correction for these codes by finding explicit information sets and PD-sets for these information sets. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [31] Partial Permutation Decoding for Abelian Codes
    Joaquin Bernal, Jose
    Jacobo Simon, Juan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (08) : 5152 - 5170
  • [32] Partial Permutation Decoding for Abelian Codes
    Joaquin Bernal-Buitrago, Jose
    Jacobo Simon, Juan
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 269 - 273
  • [33] Partial permutation decoding for MacDonald codes
    Key, Jennifer D.
    Seneviratne, Padmapani
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2016, 27 (05) : 399 - 412
  • [34] Binary codes from graphs on triples
    Key, JD
    Moori, J
    Rodrigues, BG
    DISCRETE MATHEMATICS, 2004, 282 (1-3) : 171 - 182
  • [35] Partial permutation decoding for codes from affine geometry designs
    Key, J.
    McDonough, T.
    Mavron, V.
    JOURNAL OF GEOMETRY, 2008, 88 (1-2) : 101 - 109
  • [36] Permutation-based Decoding of Reed-Muller Codes in Binary Erasure Channel
    Ivanov, Kirill
    Urbanke, Ruediger
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 21 - 25
  • [37] ON PERMUTATION DECODING OF BINARY CYCLIC DOUBLE-ERROR-CORRECTING CODES OF CERTAIN LENGTHS
    SHIVA, SGS
    FUNG, KC
    TAN, HSY
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (05) : 641 - +
  • [38] Binary Codes and Partial Permutation Decoding Sets from Biadjacency Matrices of the Bipartite Graphs Γ (2k+1, k, k+2, 1)
    Fish, W.
    Mumba, N. B.
    Mwambene, E.
    Rodrigues, B. G.
    GRAPHS AND COMBINATORICS, 2017, 33 (02) : 357 - 368
  • [39] Reed-Muller codes and permutation decoding
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2010, 310 (22) : 3114 - 3119
  • [40] Decoding mixed errors and erasures in permutation codes
    Hunt, Francis H.
    Perkins, Stephanie
    Smith, Derek H.
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (02) : 481 - 493