Extracting Crop Spatial Distribution from Gaofen 2 Imagery Using a Convolutional Neural Network

被引:22
|
作者
Chen, Yan [1 ]
Zhang, Chengming [1 ,2 ,3 ]
Wang, Shouyi [1 ]
Li, Jianping [4 ]
Li, Feng [5 ]
Yang, Xiaoxia [1 ,3 ]
Wang, Yuanyuan [1 ,3 ]
Yin, Leikun [1 ]
机构
[1] Shandong Agr Univ, Coll Informat Sci & Engn, 61 Daizong Rd, Tai An 271000, Shandong, Peoples R China
[2] Key Open Lab Arid Climate Change & Disaster Reduc, 2070 Donggangdong Rd, Lanzhou 730020, Gansu, Peoples R China
[3] Shandong Technol & Engn Ctr Digital Agr, 61 Daizong Rd, Tai An 271000, Shandong, Peoples R China
[4] CMA, Key Lab Meteorol Disaster Monitoring & Early Warn, 71 Xinchangxi Rd, Yinchuan 750002, Peoples R China
[5] Shandong Provincal Climate Ctr, 12 Wuying Mt Rd, Jinan 250001, Shandong, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 14期
关键词
convolutional neural network; high-resolution remote sensing imagery; Gaofen; 2; imagery; crops; winter wheat; spatial distribution information; Feicheng county; VEGETATION INDEXES; OBJECT; CLASSIFICATION;
D O I
10.3390/app9142917
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using satellite remote sensing has become a mainstream approach for extracting crop spatial distribution. Making edges finer is a challenge, while simultaneously extracting crop spatial distribution information from high-resolution remote sensing images using a convolutional neural network (CNN). Based on the characteristics of the crop area in the Gaofen 2 (GF-2) images, this paper proposes an improved CNN to extract fine crop areas. The CNN comprises a feature extractor and a classifier. The feature extractor employs a spectral feature extraction unit to generate spectral features, and five coding-decoding-pair units to generate five level features. A linear model is used to fuse features of different levels, and the fusion results are up-sampled to obtain a feature map consistent with the structure of the input image. This feature map is used by the classifier to perform pixel-by-pixel classification. In this study, the SegNet and RefineNet models and 21 GF-2 images of Feicheng County, Shandong Province, China, were chosen for comparison experiment. Our approach had an accuracy of 93.26%, which is higher than those of the existing SegNet (78.12%) and RefineNet (86.54%) models. This demonstrates the superiority of the proposed method in extracting crop spatial distribution information from GF-2 remote sensing images.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] DETECTION OF OAK WILT DISEASE USING CONVOLUTIONAL NEURAL NETWORK FROM UAV NATURAL COLOR IMAGERY
    Lee, Hwa-Seon
    Seo, Won-Woo
    Lee, Kyu-Sung
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6622 - 6624
  • [42] A New Convolutional Neural Network for Motor Imagery Classification
    Zhang, Ruilong
    Gong, Qun
    Zhao, Xinyi
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8428 - 8432
  • [43] Comparison of Convolutional Neural Network Architectures on Dermastopic Imagery
    Chabala, William F.
    Jouny, Ismail
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 928 - 931
  • [44] Extracting axion string network parameters from simulated CMB birefringence maps using convolutional neural networks
    Hagimoto, Ray
    Long, Andrew J.
    Amin, Mustafa A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2025, (03):
  • [45] Improved Potato Crop Disease Classification Using Ensembled Convolutional Neural Network
    Singh, Gurpreet
    Kasana, Geeta
    Singh, Karamjeet
    POTATO RESEARCH, 2024,
  • [46] Classification of multiple motor imagery using deep convolutional neural networks and spatial filters
    Olivas-Padilla, Brenda E.
    Chacon-Murguia, Mario, I
    APPLIED SOFT COMPUTING, 2019, 75 : 461 - 472
  • [47] ME-Net: A Deep Convolutional Neural Network for Extracting Mangrove Using Sentinel-2A Data
    Guo, Mingqiang
    Yu, Zhongyang
    Xu, Yongyang
    Huang, Ying
    Li, Chunfeng
    REMOTE SENSING, 2021, 13 (07)
  • [48] Extracting Wetland Type Information with a Deep Convolutional Neural Network
    Guan, XianMing
    Wang, Di
    Wan, Luhe
    Zhang, Jiyi
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [49] Extracting Lamb wave vibrating modes with convolutional neural network
    He, Juxing
    Tian, Yahui
    Li, Honglang
    Lu, Zixiao
    Yang, Guiting
    Lan, Jianyu
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 151 (04): : 2290 - 2296
  • [50] Mapping and Discriminating Rural Settlements Using Gaofen-2 Images and a Fully Convolutional Network
    Ye, Ziran
    Si, Bo
    Lin, Yue
    Zheng, Qiming
    Zhou, Ran
    Huang, Lu
    Wang, Ke
    SENSORS, 2020, 20 (21) : 1 - 16