Bond-order reactive force fields for molecular dynamics simulations of crystalline silica

被引:13
|
作者
Cowen, Benjamin J. [1 ,2 ]
El-Genk, Mohamed S. [1 ,2 ,3 ,4 ]
机构
[1] Univ New Mexico, Inst Space & Nucl Power Studies, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Nucl Engn, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Chem & Biol Engn Dept, Albuquerque, NM 87131 USA
关键词
Bond-order; Variable-charge reactive force fields; MD simulation of silica polymorphs; Alpha-beta transition; Accuracy and transferability; CRYSTALLOGRAPHY OPEN DATABASE; OPEN-ACCESS COLLECTION; REAXFF; QUARTZ; PRESSURE;
D O I
10.1016/j.commatsci.2015.09.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the applicability of the bond-order, variable-charge (BOVC) force fields of the Charge-Optimized Many-Body (COMB10), ReaxFF(SiO)(H2O) , and ReaxFF(SiO)(GSI) , for molecular dynamics (MD) simulations of crystalline SiO2. The calculated lattice constants and densities of the four SiO2 polymorphs, quartz, cristobalite, coesite, and stishovite, are compared to experimental values. Additionally, the calculated pair distribution and bond-angle distribution functions and the alpha-beta transition for quartz, the most stable low-energy polymorph, are compared to experimental results. The simulations with the COMB10 force field accurately predict the properties of the SiO2 polymorphs, except the alpha-cristobalite, and the quartz alpha-beta transition. The results with ReaxFF(SiO)(H2O) and ReaxFF(SiO)(GSI) accurately predict the properties of the SiO2 polymorphs, except the stishovite, but those with ReaxFF(SiO)(H2O) inaccurately predict the quartz alpha-beta transition. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [21] Point defects in L10 FePt studied by molecular dynamics simulations based on an analytic bond-order potential
    Hao Dong
    XiaoLin Shu
    RongMing Wang
    Science China Physics, Mechanics and Astronomy, 2011, 54 : 1429 - 1432
  • [22] Polarizable force fields for molecular dynamics simulations of biomolecules
    Baker, Christopher M.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2015, 5 (02) : 241 - 254
  • [23] Analytic bond-order potential for atomistic simulations of zinc oxide
    Erhart, Paul
    Juslin, Niklas
    Goy, Oliver
    Nordlund, Kai
    Mueller, Ralf
    Albe, Karsten
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (29) : 6585 - 6605
  • [24] High-fidelity simulations of CdTe vapor deposition from a bond-order potential-based molecular dynamics method
    Zhou, X. W.
    Ward, D. K.
    Wong, B. M.
    Doty, F. P.
    Zimmerman, J. A.
    Nielson, G. N.
    Cruz-Campa, J. L.
    Gupta, V. P.
    Granata, J. E.
    Chavez, J. J.
    Zubia, D.
    PHYSICAL REVIEW B, 2012, 85 (24)
  • [25] Screened environment-dependent reactive empirical bond-order potential for atomistic simulations of carbon materials
    Perriot, Romain
    Gu, Xiang
    Lin, You
    Zhakhovsky, Vasily V.
    Oleynik, Ivan I.
    PHYSICAL REVIEW B, 2013, 88 (06)
  • [26] Bond-order potential for point and extended defect simulations in tungsten
    Ahlgren, T.
    Heinola, K.
    Juslin, N.
    Kuronen, A.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
  • [28] Empirical bond-order potential description of thermodynamic properties of crystalline silicon
    Porter, LJ
    Yip, S
    Yamaguchi, M
    Kaburaki, H
    Tang, MJ
    JOURNAL OF APPLIED PHYSICS, 1997, 81 (01) : 96 - 106
  • [29] Implementing reactivity in molecular dynamics simulations with harmonic force fields
    Winetrout, Jordan J.
    Kanhaiya, Krishan
    Kemppainen, Joshua
    in 't Veld, Pieter J.
    Sachdeva, Geeta
    Pandey, Ravindra
    Damirchi, Behzad
    van Duin, Adri
    Odegard, Gregory M.
    Heinz, Hendrik
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [30] Polarizable force fields for Monte Carlo and molecular dynamics simulations
    Jordan, Kenneth D.
    DeFusco, Albert A., III
    Jiang, Hao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232 : 922 - 922