INVESTIGATION ON CO-PYROLYSIS OF SEWAGE SLUDGE WITH COAL

被引:2
|
作者
Tan, Zhong-Xin [1 ]
Ai, Ping [2 ]
Li, Yan-Min [3 ]
Ji, Xiao-Yan [4 ]
Feng, Wei [5 ]
机构
[1] Huazhong Agr Univ, Coll Resources & Environm, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Coll Engn, Wuhan 430070, Peoples R China
[3] China Agr Univ, Coll Resources & Environm, Beijing 430070, Peoples R China
[4] Lulea Univ Technol, Div Energy Sci, S-97187 Lulea, Sweden
[5] Minist Water Resources, Monitoring Ctr Soil & Water Conservat, Beijing 100053, Peoples R China
来源
ENVIRONMENT PROTECTION ENGINEERING | 2014年 / 40卷 / 01期
关键词
TG-FTIR; FUNCTIONAL-GROUPS; OXYGEN; WASTE;
D O I
10.5277/epe140109
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Co-pyrolysis characteristics of sludge with coal and sludge briquetted with coal were studied by the TG-FTIR method. From TG data, weight loss of sludge briquetted was higher than that of sludge and sludge and coal which means that thermal reaction effect of sludge briquetted is better than those of other two materials. Gas products of pyrolysis were CO, CO2, H2O, alcohol, ketone, acid, hydrocarbon, amine and azine from the FTIR analysis. At last, evolving patterns of the pyrolyses and the yields of their gas products have been recorded, providing extremely important data on the mechanism of the process.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 50 条
  • [21] Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste
    Chen, Guanyi
    Tian, Shu
    Liu, Bin
    Hu, Mingtao
    Ma, Wenchao
    Li, Xiangping
    WASTE MANAGEMENT, 2020, 103 : 268 - 275
  • [22] Co-pyrolysis characteristics of coal and sludge blends using thermogravimetric analysis
    Xiao, Pu
    Xu, Ling
    Wang, Xidong
    Chang, Zhibin
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2015, 34 (06) : 1780 - 1789
  • [23] Thermogravimetric analysis of the co-pyrolysis of a bituminous coal and pulp mill sludge
    R. N. Coimbra
    S. Paniagua
    C. Escapa
    L. F. Calvo
    M. Otero
    Journal of Thermal Analysis and Calorimetry, 2015, 122 : 1385 - 1394
  • [24] Thermogravimetric analysis of the co-pyrolysis of a bituminous coal and pulp mill sludge
    Coimbra, R. N.
    Paniagua, S.
    Escapa, C.
    Calvo, L. F.
    Otero, M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 122 (03) : 1385 - 1394
  • [25] SEWAGE SLUDGE AND PINEWOOD SAWDUST CO-PYROLYSIS IN A CONICAL SPOUTED BED REACTOR
    Alvarez, J.
    Amutio, M.
    Lopez, G.
    Artetxe, M.
    Erkiaga, A.
    Barbarias, I.
    Arregi, A.
    Olazar, M.
    PAPERS OF THE 23RD EUROPEAN BIOMASS CONFERENCE: SETTING THE COURSE FOR A BIOBASED ECONOMY, 2015, : 1268 - 1272
  • [26] Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar
    Wang, Gang
    Yu, Guang-Wei
    Xie, Sheng-Yu
    Jiang, Ru-Qing
    Wang, Yin
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2019, 47 (05): : 611 - 620
  • [27] Study on the co-pyrolysis characteristics of sewage sludge and wood powder and kinetic analysis
    Zhang, Jun
    Zhao, Rui
    Du, Yuying
    Chen, Liang
    Chen, Zizhao
    Xiao, Na
    Wu, Zhengshun
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (02) : 1593 - 1605
  • [28] Synergistic Effects on the Co-pyrolysis of Agricultural Wastes and Sewage Sludge at Various Ratios
    Chen, Xueru
    Wu, Rongtai
    Sun, Yan
    Jian, Xiumei
    ACS OMEGA, 2022, 7 (01): : 1264 - 1272
  • [29] Co-pyrolysis of microalgae and sewage sludge: Biocrude assessment and char yield prediction
    Wang, Xin
    Zhao, Bingwei
    Yang, Xiaoyi
    ENERGY CONVERSION AND MANAGEMENT, 2016, 117 : 326 - 334
  • [30] Nutrient stability and sorption of sewage sludge biochar prepared from co-pyrolysis of sewage sludge and stalks/mineral materials
    Duan, Xing-Yu
    Cao, Yang
    Liu, Tao-Ze
    Li, Ling
    Wang, Bing
    Wang, Xiao-Dan
    ENVIRONMENTAL POLLUTANTS AND BIOAVAILABILITY, 2020, 32 (01) : 12 - 18