Measurements of 31S energy levels and reevaluation of the thermonuclear resonant 30P(p, γ)31S reaction rate

被引:34
|
作者
Wrede, C. [1 ,2 ]
Caggiano, J. A. [3 ]
Clark, J. A. [1 ]
Deibel, C. A. [1 ]
Parikh, A. [1 ]
Parker, P. D. [1 ]
机构
[1] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] TRIUMF, Vancouver, BC V6T 2A3, Canada
来源
PHYSICAL REVIEW C | 2009年 / 79卷 / 04期
关键词
ISOSPIN; DECAYS; GRAINS; STATES; TABLES; NOVAE;
D O I
10.1103/PhysRevC.79.045803
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
By measuring the P-31(He-3, t)S-31, P-31(He-3, t)S-31*(p)P-30, and S-32(d, t)S-31 reactions, the level scheme of S-31 has been refined and extended up to E-x = 9.5 MeV. A total of 17 new levels, and 5 tentative new levels, have been measured. In addition, 5 tentatively known levels have been confirmed. The uncertainties in the excitation energies of many known S-31 levels have been reduced substantially. Spin constraints have been made for 8 proton-unbound levels by measuring 18 triton-proton angular correlations from the P-31(He-3, t)S-31*(p)P-30 reaction. Finite proton-decay branching ratios (including discrimination between decays to the ground state and first two excited states of P-30) have been measured for 38 levels, and upper limits have been set for 3 additional levels. The lowest isospin T = 3/2 level has been observed, and candidates for the second and third T = 3/2 levels have been identified. The new experimental information on P-30 + p resonance parameters has been used together with data from previous measurements to calculate the thermonuclear, resonant P-30(p, gamma)S-31 reaction rate over three orders of magnitude in temperature: 0.01 < T < 10 GK. Good agreement is found with estimates based on Hauser-Feshbach statistical models over the range 0.08 < T < 10 GK, but differences are found with rates previously estimated using the experimental information at hand.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Astrophysically important 31S states studied with the 32S(p, d)31S reaction (vol 76, pg 015803, 2007)
    Ma, Z.
    Bardayan, D. W.
    Blackmon, J. C.
    Fitzgerald, R. P.
    Guidry, M. W.
    Hix, W. R.
    Jones, K. L.
    Kozub, R. L.
    Livesay, R. J.
    Smith, M. S.
    Thomas, J. S.
    Visser, D. W.
    PHYSICAL REVIEW C, 2007, 76 (03):
  • [22] Transition probabilities in 31P and 31S: A test for isospin symmetry
    Tonev, D.
    de Angelis, G.
    Deloncle, I
    Goutev, N.
    De Gregorio, G.
    Pavlov, P.
    Pantaleev, I. L.
    Iliev, S.
    Yavahchova, M. S.
    Bizzeti, P. G.
    Demerdjiev, A.
    Dimitrov, D. T.
    Farnea, E.
    Gadea, A.
    Geleva, E.
    He, C. Y.
    Laftchiev, H.
    Lenzi, S. M.
    Lunardi, S.
    Marginean, N.
    Menegazzo, R.
    Napoli, D. R.
    Nowacki, F.
    Orlandi, R.
    Penttila, H.
    Recchia, F.
    Sahin, E.
    Singh, R. P.
    Stoyanova, M.
    Ur, C. A.
    Wirth, H-F
    PHYSICS LETTERS B, 2021, 821
  • [23] Shell-model studies of the astrophysical rapid-proton-capture reaction 30P(p,γ)31S (vol 89, 062801, 2014)
    Brown, B. Alex
    Richter, W. A.
    Wrede, C.
    PHYSICAL REVIEW C, 2015, 92 (06):
  • [24] Unbound states of 32Cl and the 31S(p,γ)32Cl reaction rate
    Matos, M.
    Blackmon, J. C.
    Linhardt, L. E.
    Bardayan, D. W.
    Nesaraja, C. D.
    Clark, J. A.
    Deibel, C. M.
    O'Malley, P. D.
    Parker, P. D.
    PHYSICAL REVIEW C, 2011, 84 (05):
  • [25] High-spin intruder states in the mirror nuclei 31S and 31P
    Testov, D. A.
    Boso, A.
    Lenzi, S. M.
    Nowacki, F.
    Recchia, F.
    de Angelis, G.
    Bazzacco, D.
    Colucci, G.
    Cottini, M.
    Galtarossa, F.
    Goasduff, A.
    Gozzelino, A.
    Jaworski, G.
    John, P. R.
    Lunardi, S.
    Menegazzo, R.
    Mengoni, D.
    Mentana, A.
    Modamio, V
    Nannini, A.
    Napoli, D. R.
    Palacz, M.
    Rocchini, M.
    Siciliano, M.
    Valiente-Dobon, J. J.
    PHYSICAL REVIEW C, 2021, 104 (02)
  • [26] γ spectroscopy of states in 32Cl relevant for the 31S(p,γ) 32Cl reaction rate
    Afanasieva, L.
    Blackmon, J. C.
    Deibel, C. M.
    Lai, J.
    Linhardt, L. E.
    Rasco, B. C.
    Seweryniak, D.
    Alcorta, M.
    Carpenter, M. P.
    Clark, J. A.
    Hoffman, C. R.
    Janssens, R. V. F.
    Zhu, S.
    PHYSICAL REVIEW C, 2017, 96 (03)
  • [27] Shell-model study of 31S at excitations relevant to the thermonuclear 30P(p,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document})31S reaction rate
    M. Bouhelal
    F. Haas
    The European Physical Journal Plus, 131 (7)
  • [28] Thermonuclear reaction rate of 30Si(p , γ) 31P
    Dermigny, John
    Iliadis, Christian
    Champagne, Art
    Longland, Richard
    PHYSICAL REVIEW C, 2020, 102 (01)
  • [29] Thermonuclear reaction rate of 29Si(p, γ)30P
    Downen, L. N.
    Iliadis, C.
    Champagne, A. E.
    Clegg, T. B.
    Coc, A.
    Dermigny, J.
    PHYSICAL REVIEW C, 2022, 105 (05)
  • [30] Mirror energy differences in the A=31 mirror nuclei, 31S and 31P, and their significance in electromagnetic spin-orbit splitting -: art. no. 031303
    Jenkins, DG
    Lister, CJ
    Carpenter, MP
    Chowdhury, P
    Hammond, NJ
    Janssens, RVF
    Khoo, TL
    Lauritsen, TL
    Seweryniak, D
    Davinson, T
    Woods, PJ
    Jokinen, A
    Penttila, H
    PHYSICAL REVIEW C, 2005, 72 (03):