AN ITERATIVITY CONDITION FOR THE MEAN-VALUE PRINCIPLE UNDER CUMULATIVE PROSPECT THEORY

被引:0
|
作者
Kaluszka, Marek [1 ]
Krzeszowiec, Michal [1 ,2 ]
机构
[1] Lodz Univ Technol, Inst Math, PL-90924 Lodz, Poland
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
来源
ASTIN BULLETIN | 2013年 / 43卷 / 01期
关键词
Cumulative Prospect Theory; Generalized Choquet Integral; iterativity; premium principles; mean-value principle; distorted probability;
D O I
10.1017/asb.2013.1
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we present the full characterization of the iterativity condition for the mean-value principle under the cumulative prospect theory. It turns out that the premium principle is iterative for exactly six pairs of probability distortion functions. Some of the corresponding premium principles are the classical mean-value principle, essential infimum or essential supremum of the random loss. Moreover, from the proof of the main theorem of this paper, it follows that the iterativity of the mean-value principle is equivalent to the iterativity of the generalized Choquet integral.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条
  • [31] A New Method of Portfolio Optimization Under Cumulative Prospect Theory
    Gong, Chao
    Xu, Chunhui
    Ando, Masakazu
    Xi, Xiangming
    TSINGHUA SCIENCE AND TECHNOLOGY, 2018, 23 (01) : 75 - 86
  • [32] REMARK ON TRUE MEAN-VALUE TEST UNDER NORMAL-DISTRIBUTION
    KIRSCHNER, HP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1976, 56 (03): : T349 - T351
  • [33] Value judgement for evaluating the sense of security based on cumulative prospect theory
    Tamura, H
    Miura, Y
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 2354 - 2359
  • [34] MEAN-VALUE THEOREM IN GENERALIZED BI-AXIALLY SYMMETRIC POTENTIAL THEORY
    QUINN, DW
    WEINACHT, RJ
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1974, 56 (04): : 446 - 450
  • [35] On the Foster-Hart Measure of Riskiness under Cumulative Prospect Theory
    Chudziak, J.
    Halicki, M.
    ACTA PHYSICA POLONICA A, 2016, 129 (05) : 950 - 954
  • [36] A Casino Gambling Model Under Cumulative Prospect Theory: Analysis and Algorithm
    Hu, Sang
    Obloj, Jan
    Zhou, Xun Yu
    MANAGEMENT SCIENCE, 2023, 69 (04) : 2474 - 2496
  • [37] Multi-Period Investment Strategies under Cumulative Prospect Theory
    Deng, Liurui
    Pirvu, Traian A.
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2019, 12 (02)
  • [38] CONNECTION BETWEEN THE MEAN-VALUE AND DISTRIBUTION DISPERSION OF DELAY TIMES UNDER SCATTERING
    OLKHOVSKY, VS
    PROKOPETS, GA
    UKRAINSKII FIZICHESKII ZHURNAL, 1987, 32 (02): : 165 - 169
  • [39] Portfolio selection by cumulative prospect theory and its comparison with mean-variance model
    Srivastava, Sweksha
    Aggarwal, Abha
    Mehra, Aparna
    GRANULAR COMPUTING, 2022, 7 (04) : 903 - 916
  • [40] Portfolio selection by cumulative prospect theory and its comparison with mean-variance model
    Sweksha Srivastava
    Abha Aggarwal
    Aparna Mehra
    Granular Computing, 2022, 7 : 903 - 916