Lattice-valued fuzzy interior operators

被引:3
|
作者
Boustique, H. [1 ]
Mohapatra, R. N. [1 ]
Richardson, G. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Lattice-valued convergence spaces; Fuzzy interior operators;
D O I
10.1016/j.fss.2009.01.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A category of lattice-valued fuzzy interior operator spaces is defined and studied. Axioms are given in order for this category to be isomorphic to the category whose objects consist of all the stratified, lattice-valued, pretopological convergence spaces. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2947 / 2955
页数:9
相关论文
共 50 条
  • [21] On the algebraic structure of binary lattice-valued fuzzy relations
    Xiaodong Pan
    Yang Xu
    Soft Computing, 2013, 17 : 411 - 420
  • [22] On the algebraic structure of binary lattice-valued fuzzy relations
    Pan, Xiaodong
    Xu, Yang
    SOFT COMPUTING, 2013, 17 (03) : 411 - 420
  • [23] Why Lattice-valued fuzzy values? A mathematical justification
    Ouncharoen, Rujira
    Kreinovich, Vladik
    Nguyen, Hung T.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (04) : 1421 - 1425
  • [24] Fuzzy Topology Based on Residuated Lattice-Valued Logic
    Ying M.S.
    Acta Mathematica Sinica, 2001, 17 (1) : 89 - 102
  • [25] Componentwise decomposition of some lattice-valued fuzzy integrals
    Ban, Adrian
    Fechete, Ioan
    INFORMATION SCIENCES, 2007, 177 (06) : 1430 - 1440
  • [26] Hierarchy of Lattice-valued Fuzzy Automata and Decidability of Their Languages
    Xue, Qianqian
    Li, Lei
    Li, Yongming
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 149 - 154
  • [27] The Lattice-Valued Turing Machines and the Lattice-Valued Type 0 Grammars
    Tang, Juan
    Fang, Yong
    Tang, Jian-Gang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [28] A LATTICE-TYPE DUALITY OF LATTICE-VALUED FUZZY CONVEX SPACES
    Yao, Wei
    Zhou, Chang-Jie
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (12) : 2843 - 2853
  • [29] Algebraic Study of Lattice-Valued Logic and Lattice-Valued Modal Logic
    Maruyama, Yoshihiro
    LOGIC AND ITS APPLICATIONS, 2009, 5378 : 170 - 184
  • [30] Closure Operators of Lattice-valued Propositional Logic LP(X)
    WANG Xue-fang
    College of Computer and Information Engineering
    .Intelligent Control Development Center
    数学季刊, 2005, (03) : 301 - 308