Behaviour at infinity of solutions of some linear functional equations in normed spaces

被引:1
|
作者
Brzdek, Janusz [1 ]
Stevic, Stevo [2 ,3 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
[2] Serbian Acad Sci, Math Inst, Beograd 11000, Serbia
[3] King Abdulaziz Univ, Dept Math, Jeddah 21859, Saudi Arabia
关键词
Linear functional equation; existence of a limit; bounded solution; strictly increasing function; DIFFERENCE-EQUATIONS; SYSTEM; NONSTABILITY; ORDER; PROOF;
D O I
10.1007/s00010-013-0194-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K is an element of{R, C}, I = (d, infinity), phi : I -> I be unbounded continuous and increasing, X be a normed space over K, F := {f is an element of X-I : lim(t ->) (infinity) f(t) exists in X},(a) over cap is an element of K, A (a) over cap:= {alpha is an element of K-I : lim(t -> infinity) a(t) =(a) over cap}, and X := {x is an element of X-I : lim sup(t -> infinity) parallel to x( t) parallel to < infinity}. We prove that the limit lim(t -> infinity) x(t) exists for every f is an element of F, alpha. is an element of A <(a)over cap> and every solution x is an element of X of the functional equation x(phi(t) = alpha(t)x(t) + (t) if and only if vertical bar(a) over cap vertical bar not equal 1. Using this result we study the behaviour of bounded at infinity solutions of the functional equation x(phi([k]) (t)) = k - 1 Sigma J - O alpha j(t)x(phi([j]) (t)) + f (t), under some conditions posed on functions alpha j (t), j = 0,1, ... , k - 1, phi and f.
引用
收藏
页码:379 / 389
页数:11
相关论文
共 50 条
  • [41] ON THE EXISTENCE OF SOLUTIONS FOR EQUATIONS WITH ACCRETIVE MAPPINGS IN PROBABILISTIC NORMED SPACES
    张石生
    陈玉清
    AppliedMathematicsandMechanics(EnglishEdition), 1990, (09) : 821 - 828
  • [42] NORMED LINEAR SPACES
    GELBAUM, BR
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (05): : 567 - &
  • [43] ON THE STABILITY OF RADICAL FUNCTIONAL EQUATIONS IN QUASI-β-NORMED SPACES
    Cho, Yeol Je
    Gordji, Madjid Eshaghi
    Kim, Seong Sik
    Yang, Youngoh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) : 1511 - 1525
  • [44] CUBIC-QUARTIC FUNCTIONAL EQUATIONS IN FUZZY NORMED SPACES
    Ghobadipour, N.
    Park, Choonkil
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2010, 1 (01): : 12 - 21
  • [45] Nearly (k, s)-Fibonacci functional equations in β-normed spaces
    Bidkham, M.
    Hosseini, M.
    Park, Choonkil
    Gordji, Madjid Eshaghi
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 131 - 141
  • [46] STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN SERSTNEV PROBABILISTIC NORMED SPACES
    Wang, Zhihua
    Rassias, Themistocles M.
    Gordji, M. Eshaghi
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (04): : 79 - 92
  • [47] The Stability of Functional Equations in Quasi-normed Quasilinear Spaces
    Dehvari, Z.
    Mosadegh, S. M. S. Modarres
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (08)
  • [48] Nearly (k, s)-Fibonacci functional equations in β-normed spaces
    M. Bidkham
    M. Hosseini
    Choonkil Park
    Madjid Eshaghi Gordji
    Aequationes mathematicae, 2012, 83 : 131 - 141
  • [49] Quintic Functional Equations in Non-Archimedean Normed Spaces
    Bodaghi, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2015, 9 (01) : 51 - 63
  • [50] Stability of quadratic functional equations in šerstnev probabilistic normed spaces
    Wang, Zhihua
    Rassias, Themistocles M.
    Eshaghi Gordji, M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (04): : 79 - 92