A SIMPLE ALGORITHM TO GENERATE FIRING TIMES FOR LEAKY INTEGRATE-AND-FIRE NEURONAL MODEL

被引:2
|
作者
Buonocore, Aniello [1 ]
Caputo, Luigia [1 ]
Pirozzi, Enrica [1 ]
Carfora, Maria Francesca [2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, Naples, Italy
[2] CNR, Ist Appplicaz Calcolo Mauro Picone, I-80125 Naples, Italy
关键词
Ornstein-Uhlenbeck process; first passage time; spike train generation; instantaneous firing rate; hazard rate method; 1ST PASSAGE TIMES; SIMULATION; EQUATION;
D O I
10.3934/mbe.2014.11.1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A method to generate first passage times for a class of stochastic processes is proposed. It does not require construction of the trajectories as usually needed in simulation studies, but is based on an integral equation whose unknown quantity is the probability density function of the studied first passage times and on the application of the hazard rate method. The proposed procedure is particularly efficient in the case of the Ornstein-Uhlenbeck process, which is important for modeling spiking neuronal activity.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Multi-chimera states in the Leaky Integrate-and-Fire model
    Tsigkri-DeSmedt, N. D.
    Hizanidis, J.
    Hoevel, P.
    Provata, A.
    4TH INTERNATIONAL YOUNG SCIENTIST CONFERENCE ON COMPUTATIONAL SCIENCE, 2015, 66 : 13 - 22
  • [32] Analysis of the Leaky Integrate-and-Fire neuron model for GPU implementation
    Venetis, Ioannis E.
    Provata, Astero
    Journal of Parallel and Distributed Computing, 2022, 163 : 1 - 19
  • [33] A Biological Plausible Generalized Leaky Integrate-and-Fire Neuron Model
    Wang, Zhenzhong
    Guo, Lilin
    Adjouadi, Malek
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 6810 - 6813
  • [34] Analysis of the Leaky Integrate-and-Fire neuron model for GPU implementation
    Venetis, Ioannis E.
    Provata, Astero
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 163 : 1 - 19
  • [35] The Morris–Lecar neuron model embeds a leaky integrate-and-fire model
    Susanne Ditlevsen
    Priscilla Greenwood
    Journal of Mathematical Biology, 2013, 67 : 239 - 259
  • [36] How Sample Paths of Leaky Integrate-and-Fire Models Are Influenced by the Presence of a Firing Threshold
    Giraudo, Maria Teresa
    Greenwood, Priscilla E.
    Sacerdote, Laura
    NEURAL COMPUTATION, 2011, 23 (07) : 1743 - 1767
  • [37] Shot noise in the leaky integrate-and-fire neuron
    Hohn, N
    Burkitt, AN
    PHYSICAL REVIEW E, 2001, 63 (03): : 031902 - 031902
  • [38] Parameters of stochastic diffusion processes estimated from observations of first-hitting times: Application to the leaky integrate-and-fire neuronal model
    Ditlevsen, Susanne
    Lansky, Petr
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [39] Purely Spintronic Leaky Integrate-and-Fire Neurons
    Brigner, Wesley H.
    Hassan, Naimul
    Hu, Xuan
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1189 - 1193
  • [40] Simulating leaky integrate-and-fire neuron with integers
    Vidybida, A. K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 159 : 154 - 160