A SIMPLE ALGORITHM TO GENERATE FIRING TIMES FOR LEAKY INTEGRATE-AND-FIRE NEURONAL MODEL

被引:2
|
作者
Buonocore, Aniello [1 ]
Caputo, Luigia [1 ]
Pirozzi, Enrica [1 ]
Carfora, Maria Francesca [2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, Naples, Italy
[2] CNR, Ist Appplicaz Calcolo Mauro Picone, I-80125 Naples, Italy
关键词
Ornstein-Uhlenbeck process; first passage time; spike train generation; instantaneous firing rate; hazard rate method; 1ST PASSAGE TIMES; SIMULATION; EQUATION;
D O I
10.3934/mbe.2014.11.1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A method to generate first passage times for a class of stochastic processes is proposed. It does not require construction of the trajectories as usually needed in simulation studies, but is based on an integral equation whose unknown quantity is the probability density function of the studied first passage times and on the application of the hazard rate method. The proposed procedure is particularly efficient in the case of the Ornstein-Uhlenbeck process, which is important for modeling spiking neuronal activity.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] On a Stochastic Leaky Integrate-and-Fire Neuronal Model
    Buonocore, A.
    Caputo, L.
    Pirozzi, E.
    Ricciardi, L. M.
    NEURAL COMPUTATION, 2010, 22 (10) : 2558 - 2585
  • [2] The parameters of the stochastic leaky integrate-and-fire neuronal model
    Petr Lansky
    Pavel Sanda
    Jufang He
    Journal of Computational Neuroscience, 2006, 21 : 211 - 223
  • [3] The parameters of the stochastic leaky integrate-and-fire neuronal model
    Lansky, Petr
    Sanda, Pavel
    He, Jufang
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2006, 21 (02) : 211 - 223
  • [4] Optimum signal in a diffusion leaky integrate-and-fire neuronal model
    Lansky, Petr
    Sacerdote, Laura
    Zucca, Cristina
    MATHEMATICAL BIOSCIENCES, 2007, 207 (02) : 261 - 274
  • [5] Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue
    Chacron, MJ
    Longtin, A
    Pakdaman, K
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 192 (1-2) : 138 - 160
  • [6] Numerical Approximation for Nonlinear Noisy Leaky Integrate-and-Fire Neuronal Model
    Sharma, Dipty
    Singh, Paramjeet
    Agarwal, Ravi P.
    Koksal, Mehmet Emir
    MATHEMATICS, 2019, 7 (04)
  • [7] Periodically forced leaky integrate-and-fire model
    Pakdaman, K
    PHYSICAL REVIEW E, 2001, 63 (04):
  • [8] Parameters of the Diffusion Leaky Integrate-and-Fire Neuronal Model for a Slowly Fluctuating Signal
    Picchini, Umberto
    Ditlevsen, Susanne
    De Gaetano, Andrea
    Lansky, Petr
    NEURAL COMPUTATION, 2008, 20 (11) : 2696 - 2714
  • [9] Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model
    Lansky, Petr
    Sanda, Pavel
    He, Jufang
    JOURNAL OF PHYSIOLOGY-PARIS, 2010, 104 (3-4) : 160 - 166
  • [10] Noisy threshold in neuronal models: connections with the noisy leaky integrate-and-fire model
    G. Dumont
    J. Henry
    C. O. Tarniceriu
    Journal of Mathematical Biology, 2016, 73 : 1413 - 1436