Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices

被引:94
|
作者
Aryana, Kiumars [1 ]
Gaskins, John T. [1 ]
Nag, Joyeeta [2 ]
Stewart, Derek A. [2 ]
Bai, Zhaoqiang [2 ]
Mukhopadhyay, Saikat [3 ]
Read, John C. [2 ]
Olson, David H. [1 ]
Hoglund, Eric R. [4 ]
Howe, James M. [4 ]
Giri, Ashutosh [5 ]
Grobis, Michael K. [2 ]
Hopkins, Patrick E. [1 ,4 ,6 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[2] Western Digital Corp, San Jose, CA 95119 USA
[3] Naval Res Lab, Washington, DC 20375 USA
[4] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[5] Univ Rhode Isl, Dept Mech Ind & Syst Engn, Kingston, RI 02881 USA
[6] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
关键词
D O I
10.1038/s41467-020-20661-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to similar to 40% and similar to 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs. Designing efficient, fast and low power consumption phase change memories remains a challenge. Aryana et al. propose a strategy to reduce operating currents by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices
    潘东
    宋化鼎
    张珊
    刘磊
    文炼均
    廖敦渊
    卓然
    王志川
    张梓桐
    杨帅
    应江华
    苗文韬
    尚汝南
    张浩
    赵建华
    Chinese Physics Letters, 2022, 39 (05) : 164 - 188
  • [42] Advanced digital twin framework for stealth dicing of ultra-thin memory devices using machine learning
    Chaudri, Amrita
    Foo, Alessandra
    Tsai, David
    Lim, Dao Kun
    Prabhala, Revathi
    Zhuang, Darren
    Vempaty, Venkata Rama Satya Pradeep
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 185
  • [43] In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices
    Pan, Dong
    Song, Huading
    Zhang, Shan
    Liu, Lei
    Wen, Lianjun
    Liao, Dunyuan
    Zhuo, Ran
    Wang, Zhichuan
    Zhang, Zitong
    Yang, Shuai
    Ying, Jianghua
    Miao, Wentao
    Shang, Runan
    Zhang, Hao
    Zhao, Jianhua
    CHINESE PHYSICS LETTERS, 2022, 39 (05)
  • [44] Recent Advances on Neuromorphic Devices Based on Chalcogenide Phase-Change Materials
    Xu, Ming
    Mai, Xianliang
    Lin, Jun
    Zhang, Wei
    Li, Yi
    He, Yuhui
    Tong, Hao
    Hou, Xiang
    Zhou, Peng
    Miao, Xiangshui
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (50)
  • [45] Interface Sensing and Cutting of ultra-thin film based on UV-assisted AFM
    Shi, Jialin
    Liu, Lianqing
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 971 - 974
  • [46] Nanoscale Thermal Transport and Phonon Dynamics in Ultra-Thin Si Based Nanostructures
    Wagner, M. R.
    Chavez-Angel, E.
    Gomis-Bresco, J.
    Reparaz, J. S.
    Shchepetov, A.
    Prunnila, M.
    Ahopelto, J.
    Alzina, F.
    Sotomayor-Torres, C. M.
    2013 19TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC), 2013, : 10 - 12
  • [47] Three-dimensional ovonic threshold switching model with combination of in-band and trap-to-band hopping mechanism for chalcogenide-based phase change memory
    Chen, Chong
    Wei, Yiqun
    Zhao, Jianwei
    Lin, Xinnan
    Song, Zhitang
    2015 15TH NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS), 2015,
  • [48] Simultaneous thermal infrared camouflage and laser scattering with thermal management based on an ultra-thin metasurface
    Feng, Xingdong
    Zhang, Fei
    Pu, Mingbo
    Guo, Yinghui
    Gao, Ping
    Luo, Xiangang
    10TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: MICRO- AND NANO-OPTICS, CATENARY OPTICS, AND SUBWAVELENGTH ELECTROMAGNETICS, 2021, 12072
  • [49] The impact of thermal boundary resistance in phase-change memory devices
    Reifenberg, John P.
    Kencke, David L.
    Goodson, Kenneth E.
    IEEE ELECTRON DEVICE LETTERS, 2008, 29 (10) : 1112 - 1114
  • [50] Thermal Boundary Resistance Measurements for Phase-Change Memory Devices
    Reifenberg, John P.
    Chang, Kuo-Wei
    Panzer, Matthew A.
    Kim, Sangbum
    Rowlette, Jeremy A.
    Asheghi, Mehdi
    Wong, H. -S. Philip
    Goodson, Kenneth E.
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (01) : 56 - 58