Reflectance of micron-sized dust particles retrieved with the Umov law

被引:15
|
作者
Zubko, Evgenij [1 ]
Videen, Gorden [2 ,3 ]
Zubko, Nataliya [4 ]
Shkuratov, Yuriy [5 ]
机构
[1] Far Eastern Fed Univ, Sch Nat Sci, 8 Sukhanova St, Vladivostok 690950, Russia
[2] Space Sci Inst, 4750 Walnut St, Boulder, CO 80301 USA
[3] US Army, Res Lab RDRL CIE S, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[4] Finnish Geospatial Res Inst, Geodeetinrinne 2, FIN-02430 Masala, Finland
[5] Kharkov Natl Univ, Inst Astron, 35 Sumskaya St, UA-61022 Kharkov, Ukraine
关键词
The Umov effect; Reflectance; Polarization; Aerosols; Dust particles; Modeling; Irregularly shaped particles; Discrete dipole approximation; LIGHT-SCATTERING; PARTICULATE SURFACES; POLARIZATION;
D O I
10.1016/j.jqsrt.2017.01.003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The maximum positive polarization P-max that initially unpolarized light acquires when scattered from a particulate surface inversely correlates with its geometric albedo A. In the literature, this phenomenon is known as the Umov law. We investigate the Umov law in application to single-scattering submicron and micron-sized agglomerated debris particles, model particles that have highly irregular morphology. We find that if the complex refractive index m is constrained to Re(m)=1.4-1.7 and Im(m)=0-0.15, model particles of a given size distribution have a linear inverse correlation between log(P-max) and log(A). This correlation resembles What is measured in particulate surfaces, suggesting a similar mechanism governing the Umov law in both systems. We parameterize the dependence of log(A) on log(P-max) of single scattering particles and analyze the airborne polarimetric measurements of atmospheric aerosols reported by Dolgos & Martins in [1]. We conclude that P-max approximate to 50% measured by Dolgos & Martins corresponds to very dark aerosols having geometric albedo A=0.019 +/- 0.005. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Extraction of micron-sized particles from a HeII bath
    Gnos, M.
    Fuzier, S.
    Van Sciver, S. W.
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 53A AND 53B, 2008, 985 : 641 - 647
  • [32] Micron-sized diamond particles are internalized by endothelial cells
    Walkowiak, Bogdan
    Okroj, Wieslawa
    Jerczynska, Hanna
    Pawlowska, Zofia
    DIAMOND AND RELATED MATERIALS, 2009, 18 (04) : 651 - 656
  • [33] DETERMINATION OF MICRON-SIZED PARTICLES - DETECTION OF POTASSIUM ION
    TUFTS, BJ
    ANALYTICAL CHEMISTRY, 1959, 31 (02) : 242 - 243
  • [34] ANALYSIS OF MICRON-SIZED PARTICLES - DETERMINATION OF PARTICLE SIZE
    LODGE, JP
    ROSS, HF
    SUMIDA, WK
    TUFTS, BJ
    ANALYTICAL CHEMISTRY, 1956, 28 (03) : 423 - 424
  • [35] Nanomechanical characterization of single micron-sized polymer particles
    He, J.Y.
    Zhang, Z.L.
    Kristiansen, H.
    Journal of Applied Polymer Science, 2009, 113 (03): : 1398 - 1405
  • [36] Experiments on collisional grain charging of micron-sized preplanetary dust
    Poppe, T
    Blum, J
    Henning, T
    ASTROPHYSICAL JOURNAL, 2000, 533 (01): : 472 - 480
  • [37] An Asteroidal Dust Ring of Micron-Sized Particles Trapped in the 1:1 Mean Motion Resonance with Jupiter
    Liou, J.-C.
    Zook, H. A.
    Industrie Alimentari, 1995, 343 (333):
  • [38] Morphology of micron-sized polystyrene particles crosslinked with urethane acrylate
    Kim, JW
    Suh, KD
    COLLOID AND POLYMER SCIENCE, 1999, 277 (2-3) : 210 - 216
  • [39] Combustion characteristics of micron-sized aluminum particles in oxygenated environments
    Badiola, Carlo
    Gill, Robert J.
    Dreizin, Edward L.
    COMBUSTION AND FLAME, 2011, 158 (10) : 2064 - 2070
  • [40] Mathematical model of nano /micron-sized polymeric particles flooding
    Long, Y. Q.
    Huang, X. H.
    Song, F. Q.
    Wang, R. Y.
    Chen, L. Q.
    2018 INTERNATIONAL CONFERENCE OF GREEN BUILDINGS AND ENVIRONMENTAL MANAGEMENT (GBEM 2018), 2018, 186