NONPARAMETRIC REGRESSION ANALYSIS OF MULTIVARIATE LONGITUDINAL DATA

被引:29
|
作者
Xiang, Dongdong [1 ]
Qiu, Peihua [2 ]
Pu, Xiaolong [1 ]
机构
[1] E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Cluster data; local polynomial regression; longitudinal data; multivariate regression; SEMIPARAMETRIC REGRESSION; CLUSTERED DATA; MODELS;
D O I
10.5705/ss.2011.317
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate longitudinal data are common in medical, industrial, and social science research. However, statistical analysis of such data in the current literature is restricted to linear or parametric modeling, which may well be inappropriate in applications. On the other hand, all existing nonparametric methods for analyzing longitudinal data are for univariate cases only. When longitudinal data are multivariate, nonparametric modeling becomes challenging, as one needs to properly handle the association among the observed data across different time points and across different components of the multivariate response. Motivated by data from the National Hearth Lung and Blood Institute, this paper proposes a nonparametric modeling approach for analyzing multivariate longitudinal data. Our method is based on multivariate local polynomial smoothing. Both theoretical and numerical results show that it is useful in various settings.
引用
收藏
页码:769 / 789
页数:21
相关论文
共 50 条
  • [1] Nonparametric regression analysis of longitudinal data
    Staniswalis, JG
    Lee, JJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) : 1403 - 1418
  • [2] Semiparametric and nonparametric regression analysis of longitudinal data
    Lin, DY
    Ying, Z
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 103 - 113
  • [3] Semiparametric and nonparametric regression analysis of longitudinal data - Comment
    Wang, MC
    Chen, YQ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 113 - 114
  • [4] Simultaneous nonparametric regression analysis of sparse longitudinal data
    Cao, Hongyuan
    Liu, Weidong
    Zhou, Zhou
    BERNOULLI, 2018, 24 (4A) : 3013 - 3038
  • [5] On the nonparametric classification and regression methods for multivariate EAS data analysis
    Chilingarian, A
    TerAntonyan, S
    Vardanyan, A
    Gils, HJ
    Knapp, J
    Rebel, H
    Roth, M
    NUCLEAR PHYSICS B, 1997, : 237 - 239
  • [6] MONOTONE NONPARAMETRIC REGRESSION FOR FUNCTIONAL/LONGITUDINAL DATA
    Chen, Ziqi
    Gao, Qibing
    Fu, Bo
    Zhu, Hongtu
    STATISTICA SINICA, 2019, 29 (04) : 2229 - 2249
  • [7] A review of nonparametric regression methods for longitudinal data
    Yang, Changxin
    Zhu, Zhongyi
    STATISTICS AND ITS INTERFACE, 2024, 17 (01) : 127 - 142
  • [8] JOINT MODELING OF MULTISTATE AND NONPARAMETRIC MULTIVARIATE LONGITUDINAL DATA
    You, Lu
    Salami, Falastin
    Torn, Carina
    Lernmark, Ake
    Tamura, Roy
    ANNALS OF APPLIED STATISTICS, 2024, 18 (03): : 2444 - 2461
  • [9] Nonparametric Analysis of Clustered Multivariate Data
    Nevalainen, Jaakko
    Larocque, Denis
    Oja, Hannu
    Porsti, Ilkka
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 864 - 872
  • [10] Semiparametric regression analysis of multivariate longitudinal data with informative observation times
    Deng, Shirong
    Liu, Kin-yat
    Zhao, Xingqiu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 107 : 120 - 130