Exploring plane hyperbolic geometry

被引:0
|
作者
Hausmann, B
Slopianka, B
Seidel, HP
机构
来源
VISUALIZATION AND MATHEMATICS: EXPERIMENTS, SIMULATIONS AND ENVIRONMENTS | 1997年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hyperbolic geometry is a geometry whose Euclidean representations cannot be conveniently handled. Straight edge and compass are not the best tools for exploring hyperbolic geometry. Interactive software, as described in this paper, is much more appropriate. A good way of finding cut about a new mathematical structure is on one hand, to visualize tile mathematical objects involved and on tile other; to observe how structure preserving mappings work on these objects. Both of these are supported by our software.
引用
收藏
页码:21 / 36
页数:16
相关论文
共 50 条
  • [41] The hyperbolic Brownian plane
    Thomas Budzinski
    Probability Theory and Related Fields, 2018, 171 : 503 - 541
  • [42] REFLECTIONS ON THE HYPERBOLIC PLANE
    Lecian, Orchidea Maria
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2013, 22 (14):
  • [43] Percolation in the hyperbolic plane
    Benjamini, I
    Schramm, O
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 487 - 507
  • [44] QUADRILATERAL IN THE HYPERBOLIC PLANE
    WILKER, JB
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (02): : 128 - 129
  • [45] Surveying in the hyperbolic plane
    Beardon, A. F.
    MATHEMATICAL GAZETTE, 2020, 104 (560): : 341 - 343
  • [46] Coordinates for the hyperbolic plane
    Chapman, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (01): : 78 - 78
  • [47] Coordinates in the hyperbolic plane
    Capodaglio R.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2006, 52 (1) : 89 - 97
  • [48] COMPLEX HYPERBOLIC PLANE
    BETTEN, D
    MATHEMATISCHE ZEITSCHRIFT, 1973, 132 (03) : 249 - 259
  • [49] LATTICES IN THE HYPERBOLIC PLANE
    HUBER, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 458 : 127 - 156
  • [50] Crocheting the hyperbolic plane
    David W. Henderson
    Daina Taimina
    The Mathematical Intelligencer, 2001, 23 : 17 - 28