Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation

被引:434
|
作者
Dong, Xiongbo [1 ,2 ]
Ren, Bangxing [2 ]
Sun, Zhiming [1 ]
Li, Chunquan [1 ]
Zhang, Xiangwei [1 ]
Kong, Minghao [2 ]
Zheng, Shuilin [1 ]
Dionysiou, Dionysios D. [2 ]
机构
[1] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[2] Univ Cincinnati, Dept Chem & Environm Engn ChEE, Environm Engn & Sci Program, Cincinnati, OH 45221 USA
关键词
Copper ferrite; Kaolinite; Peroxymonosulfate; Sulfate radical; BPA; HETEROGENEOUS ACTIVATION; AQUEOUS-SOLUTION; ADVANCED OXIDATION; PHOTOCATALYTIC ACTIVITY; ORGANIC POLLUTANTS; HYDROXYL RADICALS; SULFATE; REMOVAL; PERSULFATE; WATER;
D O I
10.1016/j.apcatb.2019.04.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, CuFe2O4/kaolinite catalysts were fabricated through a facile citrate combustion method and were evaluated for their efficiency to activate peroxymonosulfate (PMS) towards the destruction of bisphenol A (BPA). The prepared catalysts were systematically characterized to explore the relationship between their characteristics and catalytic activities. In general, higher specific surface area, larger pore volume, more hydroxyl groups, and more accessible reactive sites of 40%-CuFe2O4/Icaolinite contributed to the greater catalytic activity in peroxymonosulfate activation for BPA degradation compared to bare CuFe2O4. Monodispersed CuFe2O4 nano particles were uniformly anchored on the surface of kaolinite with Fe-O-Al bond, which prevented leaching of metal ions and contributed to the excellent reusability. The sulfate radicals produced in the CuFe2O4/kaolinite/PMS system were proved as the predominant radical species through electron spin resonance (ESR) and radical quenching experiments. Based on the results of X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance - Fourier transform infrared spectra (ATR-FTIR), two main possible pathways of sulfate radicals generation were proposed: the generation and decomposition of equivalent to Cu(II)-(HO)OSO3- (Cu(II)/Cu(III) and Cu (III)/Cu(II) redox reaction) and the oxidation of equivalent to Fe(II). Moreover, the BPA degradation pathway was proposed through the identification of transformation products. This work provides an interesting insight for PMS activation by the high-efficient natural mineral-based catalysts for wastewater reclamation.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 50 条
  • [31] Highly efficient and selective degradation of methylene blue from mixed aqueous solution by using monodisperse CuFe2O4 nanoparticles
    Wang, Lingyun
    Hu, Guowen
    Wang, Zhiyi
    Wang, Baodui
    Song, Yumin
    Tang, Huiang
    RSC ADVANCES, 2015, 5 (90): : 73327 - 73332
  • [32] Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals
    Qin, Wenxiu
    Fang, Guodong
    Wang, Yujun
    Zhou, Dongmei
    Chemical Engineering Journal, 2019, 348 : 526 - 534
  • [33] Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation
    Ye, Peng
    Wu, Deming
    Wang, Manye
    Wei, Yi
    Xu, Aihua
    Li, Xiaoxia
    APPLIED SURFACE SCIENCE, 2018, 428 : 131 - 139
  • [34] Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation
    Wang, Bingyu
    Li, Qiaoqiao
    Lv, Ying
    Fu, Haibin
    Liu, Dingyi
    Feng, Yanfang
    Xie, Huifang
    Qu, Hongxia
    CHEMICAL ENGINEERING JOURNAL, 2021, 416
  • [35] Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals
    Qin, Wenxiu
    Fang, Guodong
    Wang, Yujun
    Zhou, Dongmei
    CHEMICAL ENGINEERING JOURNAL, 2018, 348 : 526 - 534
  • [36] Activation of peroxymonosulfate by a floating oxygen vacancies - CuFe2O4 photocatalyst under visible light for efficient degradation of sulfamethazine
    Sun, Qiunan
    Wang, Xuejiang
    Liu, Yiyang
    Xia, Siqing
    Zhao, Jianfu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 824
  • [37] Copper Ferrite (CuFe2O4) Nanoparticles
    Hudson, Reuben
    SYNLETT, 2013, 24 (10) : 1309 - 1310
  • [38] Catalytic potential of CuFe2O4/GO for activation of peroxymonosulfate in metronidazole degradation: study of mechanisms
    Roghayeh Noroozi
    Mitra Gholami
    Mahdi Farzadkia
    Ahmad Jonidi Jafari
    Journal of Environmental Health Science and Engineering, 2020, 18 : 947 - 960
  • [39] CoFe2O4 nanoparticles assembled on natural sepiolite fibers as peroxymonosulfate catalyst for efficient norfloxacin degradation
    Ren, Xiaofei
    Wang, Yubo
    Hu, Guicong
    Guo, Qingbin
    Gao, Dengzheng
    Hu, Xiaolong
    Wang, Li
    Song, Junying
    MATERIALS RESEARCH BULLETIN, 2024, 169
  • [40] Catalytic potential of CuFe2O4/GO for activation of peroxymonosulfate in metronidazole degradation: study of mechanisms
    Noroozi, Roghayeh
    Gholami, Mitra
    Farzadkia, Mahdi
    Jonidi Jafari, Ahmad
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2020, 18 (02) : 947 - 960