Application of Adaptive Neuro-Fuzzy Inference System for Predicting Software Change Proneness

被引:0
|
作者
Peer, Akshit [1 ]
Malhotra, Ruchika [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Engn, Delhi 110042, India
关键词
ANFIS; bagging; change proneness; logistic regression; random forest; receiver operating characteristic (ROC) curve; sensitivity; specificity; METRICS; VALIDATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we model the relationship between object-oriented metrics and software change proneness. We use adaptive neuro-fuzzy inference system (ANFIS) to calculate the change proneness for the two commercial open source software systems. The performance of ANFIS is compared with other techniques like bagging, logistic regression and decision trees. We use the area under receiver operating characteristic (ROC) curve to determine the effectiveness of the model. The present analysis shows that of all the techniques investigated, ANFIS gives the best results for both the software systems. We also calculate the sensitivity and specificity for each technique and use it as a measure to evaluate the model effectiveness. The aim of the study is to know the change prone classes in the early phases of software development so as to plan the allocation of testing resources effectively and thus improve software maintainability.
引用
收藏
页码:2026 / 2031
页数:6
相关论文
共 50 条
  • [31] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [32] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [33] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65
  • [34] An application of the adaptive neuro-fuzzy inference system for prediction of surface roughness in turning
    Roy, Shibendu
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2007, 28 (04) : 281 - 288
  • [35] Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping
    Park, Inhye
    Choi, Jaewon
    Lee, Moung Jin
    Lee, Saro
    COMPUTERS & GEOSCIENCES, 2012, 48 : 228 - 238
  • [36] Application of adaptive neuro-fuzzy inference system for prediction of internal stability of soils
    Xue, Xinhua
    Xiao, Ming
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2019, 23 (02) : 153 - 171
  • [37] Application of adaptive neuro-fuzzy inference system for prediction of minimum miscibility pressure
    Shahrabi, Mohammadjavad Ameri
    Kivi, Iman Rahimzadeh
    Akbari, Mohammadreza
    Safiabadi, Anoush
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2014, 7 (01) : 68 - 84
  • [38] Application of adaptive neuro-fuzzy inference system in bridge condition state evaluation
    Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China
    Zhejiang Daxue Xuebao (Gongxue Ban), 2008, 11 (2015-2022): : 2015 - 2022
  • [39] Application of adaptive neuro-fuzzy inference system in prediction of hydrate formation temperature
    Zargari, Mohammad Hadi
    Arabloo, Milad
    Ghayyem, Mohammad Ali
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2016, 38 (05) : 758 - 762
  • [40] Application of hybrid adaptive neuro-fuzzy inference system in well placement optimization
    Karkevandi-Talkhooncheh, Abdorreza
    Sharifi, Mohammad
    Ahmadi, Mohammad
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 166 : 924 - 947