Adaptive k-means clustering algorithm for MR breast image segmentation

被引:91
|
作者
Moftah, Hossam M. [1 ,2 ]
Azar, Ahmad Taher [2 ,3 ]
Al-Shammari, Eiman Tamah [4 ]
Ghali, Neveen I. [2 ,5 ]
Hassanien, Aboul Ella [2 ,6 ]
Shoman, Mahmoud [6 ]
机构
[1] Beni Suef Univ, Fac Comp & Informat, Bani Suwayf, Egypt
[2] SRGE, Cairo, Egypt
[3] Benha Univ, Fac Comp & Informat, Banha, Egypt
[4] Kuwait Univ, Fac Comp Sci & Engn, Kuwait, Kuwait
[5] Al Azhar Univ, Fac Sci, Cairo, Egypt
[6] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 24卷 / 7-8期
关键词
K-means clustering; Image segmentation; Magnetic resonance (MR) image; Breast cancer; Adaptive segmentation; SCREENING MAMMOGRAPHY; NEURAL-NETWORK;
D O I
10.1007/s00521-013-1437-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is vital for meaningful analysis and interpretation of the medical images. The most popular method for clustering is k-means clustering. This article presents a new approach intended to provide more reliable magnetic resonance (MR) breast image segmentation that is based on adaptation to identify target objects through an optimization methodology that maintains the optimum result during iterations. The proposed approach improves and enhances the effectiveness and efficiency of the traditional k-means clustering algorithm. The performance of the presented approach was evaluated using various tests and different MR breast images. The experimental results demonstrate that the overall accuracy provided by the proposed adaptive k-means approach is superior to the standard k-means clustering technique.
引用
收藏
页码:1917 / 1928
页数:12
相关论文
共 50 条
  • [21] Dynamic particle swarm optimization and K-means clustering algorithm for image segmentation
    Li, Haiyang
    He, Hongzhou
    Wen, Yongge
    OPTIK, 2015, 126 (24): : 4817 - 4822
  • [22] Medical image segmentation using K-MEANS clustering and improved watershed algorithm
    Ng, H. P.
    Ong, S. H.
    Foong, K. W. C.
    Goh, P. S.
    Nowinski, W. L.
    7TH IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 2006, : 61 - +
  • [23] Segmentation of Breast Ultrasound Image Using Regularized K-Means (ReKM) Clustering
    Samundeeswari, E. S.
    Saranya, P. K.
    Manavalan, R.
    PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 1379 - 1383
  • [24] Segmentation of MR Breast Cancer Images based on DWT and K-means algorithm
    Yuan, Gaoteng
    Liu, Yihui
    Huang, Wei
    2019 3RD INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2019), 2019, 1229
  • [25] RANKED K-MEANS CLUSTERING FOR TERAHERTZ IMAGE SEGMENTATION
    Ayech, Mohamed Walid
    Ziou, Djemel
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4391 - 4395
  • [26] Efficient image segmentation and implementation of K-means clustering
    Deeparani, K.
    Sudhakar, P.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 8076 - 8079
  • [27] Infrared Image Segmentation Algorithm Using Histogram-Based Self-adaptive K-means Clustering
    Zhao, Zhiqiang
    Ling, Xin
    Wu, Jian
    Rui, Xiaoyong
    PROCEEDINGS OF THE 2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND AUTOMATION ENGINEERING, 2016, 42 : 682 - 688
  • [28] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67
  • [29] Nonparametric K-means clustering-based adaptive unsupervised colour image segmentation
    Khan, Zubair
    Yang, Jie
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [30] EDGE-ADAPTIVE IMAGE SEGMENTATION BASED ON SEAM PROCESSING AND K-MEANS CLUSTERING
    Chen, Tse-Wei
    Su, Hsiao-Hang
    Chen, Yi-Ling
    Chien, Shao-Yi
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3049 - 3052