Interface Bonding of SA508-3 Steel Under Deformation and High Temperature Diffusion

被引:1
|
作者
Xu, Bin [1 ,2 ]
Shao, Chunjuan [1 ,3 ]
Sun, Mingyue [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Liaoning, Peoples R China
[3] Henan Polytech Univ, Sch Mat Sci & Engn, Jiaozuo 454000, Peoples R China
来源
PROCEEDINGS OF 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2018) | 2018年 / 1960卷
基金
中国国家自然科学基金;
关键词
SA508-3; steel; interface bonding; deformation;
D O I
10.1063/1.5034889
中图分类号
O59 [应用物理学];
学科分类号
摘要
There are mainly two parameters affecting high temperature interface bonding: deformation and diffusion. To study these two parameters, interface bonding of SA508-3 bainitie steel at 1100 degrees C are simulated by gleeble3500 thermal simulator. The results show that interface of SA508-3 steel can be bonded under deformation and high temperature. For a specimen pressed at 1100 degrees C without further high temperature diffusion, a reduction ratio of 30% can make the interlace begun to bond, but the interface is still part of the grain boundary and small grains exist near the interface. When reduction ratio reaches 50%, the interface can be completely bonded and the microstructure near the interface is the same as that of the base material. When deformation is small, long time diffusion can also help the interface bonding. The results show that when the diffusion time is long enough, the interface under small deformation can also be bonded. For a specimen holding for 24h at 1100 degrees C, only 13% reduction ratio is enough for interthce bonding.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Microstructural Evolution of SA508 Grade 3 Steel during Hot Deformation
    Paranjayee Mandal
    Himanshu Lalvani
    Andrew Barrow
    Jack Adams
    Journal of Materials Engineering and Performance, 2020, 29 : 1015 - 1033
  • [42] Sensitivity of interfacial bonding quality on strain rate in SA508-3/316L joints produced by vacuum hot-compression bonding
    Zhang, Maolong
    Lu, Hao
    Li, Chuanzong
    VACUUM, 2024, 222
  • [43] SA508-3钢保温过程奥氏体晶粒长大规律研究
    王伟
    隋大山
    张佩佩
    崔振山
    热加工工艺, 2013, 42 (16) : 31 - 34
  • [44] 高温锻造中ASME SA508-3钢的动态软化
    朱峰
    曹起骧
    徐秉业
    清华大学学报(自然科学版), 1999, (04) : 14 - 17
  • [45] 核电SA508-3钢奥氏体晶粒长大规律的研究
    郭桢
    刘建生
    李景丹
    龚虎
    大型铸锻件, 2017, (03) : 33 - 37
  • [46] SA508-3钢锻件冲击韧性波动原因分析
    贾新胜
    李其
    武兴国
    安笑琴
    冉玲
    李勇
    大型铸锻件, 2019, (06) : 25 - 27
  • [47] Numerical simulation and experiments test of residual stress of longitudinal weld of thick SA508-3 steel pipe for nuclear power
    College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050, China
    不详
    Hanjie Xuebao, 6 (59-62+67):
  • [48] Transformation Mechanism for the Blocky Microstructure of Nuclear Power Used SA508-3 Steel (vol 54, pg 1174, 2023)
    Kundu, S.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (08): : 3370 - 3370
  • [49] 基于应变补偿的SA508-3钢本构模型修正
    李景丹
    李荣斌
    梁红玉
    热加工工艺, 2024, (11) : 134 - 137
  • [50] 核压力容器SA508-3钢高温性能试验分析
    迟露鑫
    麻永林
    邢淑清
    赵勇桃
    陈芙蓉
    陈重毅
    四川大学学报(工程科学版), 2011, 43 (02) : 202 - 206