Mean-field solution of the random Ising model on the dual lattice

被引:2
|
作者
Serva, M
Paladin, G
Raboanary, J
机构
[1] UNIV AQUILA,DIPARTIMENTO MATEMAT,I-67100 COPPITO,LAQUILA,ITALY
[2] UNIV AQUILA,DIPARTIMENTO FIS,I-67100 COPPITO,LAQUILA,ITALY
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 01期
关键词
D O I
10.1103/PhysRevE.53.R9
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a duality transformation that allows one to express the partition function of the d-dimensional Ising model with random nearest neighbor coupling in terms of spin variables defined on the square plaquettes of the lattice. The dual model is solved in the mean-field approximation.
引用
收藏
页码:R9 / R12
页数:4
相关论文
共 50 条
  • [21] Stable, metastable and unstable states in the mean-field random-field Ising model at T=0
    Rosinberg, M. L.
    Tarjus, G.
    Perez-Reche, F. J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [22] Hysteresis and complexity in the mean-field random-field Ising model: The soft-spin version
    Rosinberg, M. L.
    Munakata, T.
    PHYSICAL REVIEW B, 2009, 79 (17)
  • [23] Mean-field solution of the Blume-Capel model under a random crystal field
    Santos, P. V.
    da Costa, F. A.
    de Araujo, J. M.
    PHYSICS LETTERS A, 2015, 379 (22-23) : 1397 - 1401
  • [24] On the random field Ising model in a honeycomb lattice
    de Albuquerque, Douglas F.
    Fittipaldi, I. P.
    de Sousa, J. R.
    Moreno, N. O.
    PHYSICA B-CONDENSED MATTER, 2006, 384 (1-2) : 230 - 232
  • [25] MEAN-FIELD, EFFECTIVE MEDIUM THEORY OF RANDOM MAGNETIC ALLOYS .1. RANDOM ISING-MODEL
    MOOKERJEE, A
    PRAMANA, 1978, 11 (02) : 223 - 232
  • [26] THE RANDOM CHESSBOARD MODEL - A MEAN-FIELD THEORY
    DELIA, S
    PHYSICA A, 1986, 137 (03): : 603 - 622
  • [27] Zero-temperature hysteresis in a random-field Ising model on a Bethe lattice:: Approach to mean-field behavior with increasing coordination number z
    Illa, X
    Shukla, P
    Vives, E
    PHYSICAL REVIEW B, 2006, 73 (09)
  • [28] MAXIMAL MEAN-FIELD SOLUTIONS IN THE RANDOM-FIELD ISING-MODEL - THE PATTERN OF THE SYMMETRY-BREAKING
    GUAGNELLI, M
    MARINARI, E
    PARISI, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21): : 5675 - 5685
  • [29] MEAN-FIELD RENORMALIZATION-GROUP APPROACHES TO THE SURFACE ON A SEMIINFINITE ISING-MODEL WITH A RANDOM SURFACE FIELD
    SUN, G
    PHYSICAL REVIEW B, 1995, 51 (06): : 3637 - 3639
  • [30] Decision Making Times in Mean-Field Dynamic Ising Model
    Bakhtin, Yuri
    ANNALES HENRI POINCARE, 2012, 13 (05): : 1291 - 1303