New numerical solutions of fractional-order Korteweg-de Vries equation

被引:25
|
作者
Inc, Mustafa [1 ,2 ]
Parto-Haghighi, Mohammad [3 ]
Akinlar, Mehmet Ali [4 ]
Chu, Yu-Ming [5 ,6 ]
机构
[1] Firat Univ, Dept Math, Elazig, Turkey
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Univ Bonab, Dept Math, Bonab, Iran
[4] Yildiz Tech Univ, Dept Engn Math, Istanbul, Turkey
[5] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[6] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
关键词
Time fractional Korteweg de Vries equation; Fictitious time integration; Group preserving scheme (GPS); Caputo derivative; GROUP PRESERVING SCHEME; KLEIN-GORDON EQUATIONS; GROUP SHOOTING METHOD; DIFFUSION; MODELS;
D O I
10.1016/j.rinp.2020.103326
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present new solutions of fractional-order Korteweg-de Vries (KdV) equation by employing a method that utilizes advantages of both techniques of fictititous time integration and group preserving. Proposed method converts the KdV to a new system of equations which is approximately solved by a semi-discretization numerical scheme. Caputo type fractional-order derivative operators are used. We apply the method to some specific cases of the KdV equation. Computational results indicate that the method gives new and highly efficient solutions of the KdV equation.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] New type of solutions for the modified Korteweg-de Vries equation
    Liu, Xing-yu
    Lu, Bin-he
    Zhang, Da-jun
    APPLIED MATHEMATICS LETTERS, 2025, 159
  • [22] Novel Analysis of Fractional-Order Fifth-Order Korteweg-de Vries Equations
    Khoshaim, Ahmed B.
    Naeem, Muhammad
    Akgul, Ali
    Ghanmi, Nejib
    Zaland, Shamsullah
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [23] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77
  • [24] Operator splitting for the fractional Korteweg-de Vries equation
    Dutta, Rajib
    Sarkar, Tanmay
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (06) : 3000 - 3022
  • [25] Comparative numerical study of time fractional coupled Korteweg-de Vries equation
    Massoun, Y.
    Alomari, A.K.
    Italian Journal of Pure and Applied Mathematics, 2022, 47 : 780 - 795
  • [26] Comparative numerical study of time fractional coupled Korteweg-de Vries equation
    Massoun, Y.
    Alomari, A. K.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 780 - 795
  • [27] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [28] On persistence properties in weighted spaces for solutions of the fractional Korteweg-de Vries equation
    Riano, Oscar
    NONLINEARITY, 2021, 34 (07) : 4604 - 4660
  • [29] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [30] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
    胡恒春
    刘飞艳
    Chinese Physics B, 2020, (04) : 139 - 144