Bounds for the exponent of the Schur multiplier

被引:8
|
作者
Sambonet, Nicola [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
FINITE P-GROUPS; TENSOR-PRODUCTS; SUBGROUPS; COCLASS;
D O I
10.1016/j.jpaa.2016.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article introduces new techniques and theorems pertaining to the powers of the unitary cocycles, the power structure of the unitary cover, and their relation to general central extensions. In turn, bounds for the exponent of the Schur multiplier and the unitary cover are provided in terms of the nilpotency class, the rank, and the coclass of the underlying group. Moreover, the quadratic bound (exp G)(2) holds whenever exp G <= 7. Finally, the problem of describing bounds is related to the study of symmetric invariant 2-cocycles. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2053 / 2063
页数:11
相关论文
共 50 条
  • [41] A multilinear Schur test and multiplier operators
    Grafakos, L
    Torres, RH
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) : 1 - 24
  • [42] ON THE TOTAL COMPONENT OF THE PARTIAL SCHUR MULTIPLIER
    De Lima, H. G. G.
    Pinedo, H.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 100 (03) : 374 - 402
  • [43] SCHUR CONVEXITY AND SCHUR-GEOMETRICALLY CONCAVITY OF GENERALIZED EXPONENT MEAN
    Li, Da-Mao
    Shi, Huan-Nan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02): : 217 - 225
  • [44] BOUNDS ON THE LJAPUNOV EXPONENT
    ENDRULLIS, M
    ENGLISCH, H
    ANNALEN DER PHYSIK, 1984, 41 (4-5) : 303 - 314
  • [45] Schur multiplier and Schur covers of relative Rota-Baxter groups
    Belwal, Pragya
    Rathee, Nishant
    Singh, Mahender
    JOURNAL OF ALGEBRA, 2024, 657 : 327 - 362
  • [46] Upper bounds on the dimension of the Schur Lie-multiplier of Lie-nilpotent Leibniz n-algebras
    Bogmis, Narcisse G. Bell
    Biyogmam, Guy R.
    Safa, Hesam
    Tcheka, Calvin
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [47] Capability and Schur multiplier of a pair of Lie algebras
    Johari, Farangis
    Parvizi, Mohsen
    Niroomand, Peyman
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 184 - 196
  • [48] The Schur Lie-multiplier of Leibniz algebras
    Casas, J. M.
    Insua, M. A.
    QUAESTIONES MATHEMATICAE, 2018, 41 (07) : 917 - 936
  • [49] THE SCHUR LEMMA FOR BOUNDED MULTIPLIER CONVERGENT SERIES
    SWARTZ, C
    MATHEMATISCHE ANNALEN, 1983, 263 (03) : 283 - 288
  • [50] On the dimension of the Schur multiplier of nilpotent lie algebras
    Rai, Pradeep K.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 3982 - 3986