Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments

被引:27
|
作者
Srokowski, Tomasz [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 04期
关键词
diffusion; Fokker-Planck equation; ANOMALOUS DIFFUSION; FORCE-FIELDS; MEDIA;
D O I
10.1103/PhysRevE.79.040104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fractional Fokker-Planck equation, which contains a variable diffusion coefficient, is discussed and solved. It corresponds to the Levy flights in a nonhomogeneous medium. For the case with the linear drift, the solution is stationary in the long-time limit and it represents the Levy process with a simple scaling. The solution for the drift term in the form lambda sgn(x) possesses two different scales which correspond to the Levy indexes mu and mu+1 (mu < 1). The former component of the solution prevails at large distances but it diminishes with time for a given x. The fractional moments, as a function of time, are calculated. They rise with time and the rate of this growth increases with lambda.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Exact solutions for a generalized nonlinear fractional Fokker-Planck equation
    Ma, Junhai
    Liu, Yanqin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 515 - 521
  • [42] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [43] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [44] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [45] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [46] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [47] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969
  • [48] A Comparative Analysis of Fractional-Order Fokker-Planck Equation
    Mofarreh, Fatemah
    Khan, Asfandyar
    Shah, Rasool
    Abdeljabbar, Alrazi
    SYMMETRY-BASEL, 2023, 15 (02):
  • [49] Implicit numerical approximation scheme for the fractional Fokker-Planck equation
    Wu, Chunhong
    Lu, Linzhang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 1945 - 1955
  • [50] Subordinated brownian motion and its fractional Fokker-Planck equation
    Stanislavsky, AA
    PHYSICA SCRIPTA, 2003, 67 (04) : 265 - 268