Controlling Hamiltonian chaos via Gaussian curvature

被引:19
|
作者
Oloumi, A
Teychenné, D
机构
[1] Stanford Univ, Med Ctr, Natl Biocomputat Ctr, Palo Alto, CA 94304 USA
[2] Helsinki Univ Technol, Dept Engn Phys & Math, FIN-02150 Helsinki, Finland
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevE.60.R6279
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a method allowing one to partly stabilize some chaotic Hamiltonians which have two degrees of freedom. The purpose of the method is to avoid the regions of V(q(1),q(2)) where its Gaussian curvature becomes negative. We show the stabilization of the Henon-Heiles system, over a wide area, for the critical energy E=1/6. Total energy of the system varies only by a few percent. [S1063-651X(99)50512-6].
引用
收藏
页码:R6279 / R6282
页数:4
相关论文
共 50 条
  • [41] Chaos synchronization via controlling partial state of chaotic systems
    Yu, XH
    Song, YX
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (06): : 1737 - 1741
  • [42] Controlling beam halo-chaos via backstepping design
    高远
    孔峰
    Chinese Physics B, 2008, (04) : 1209 - 1215
  • [43] CONTROLLING CHAOS OF AN UNCERTAIN LOZI SYSTEM VIA ADAPTIVE TECHNIQUES
    GONZALEZ, GA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (02): : 559 - 562
  • [44] Controlling chaos via second-order sliding modes
    Cannas, B
    Cincotti, S
    Pisano, A
    Usai, E
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III: GENERAL & NONLINEAR CIRCUITS AND SYSTEMS, 2003, : 156 - 159
  • [45] CONTROLLING CHAOS
    BALMER, HC
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 1961, 85 (15) : 836 - &
  • [46] Controlling chaos
    Ott, E
    Spano, M
    CHAOTIC, FRACTAL, AND NONLINEAR SIGNAL PROCESSING, 1996, (375): : 92 - 103
  • [47] Information-Geometric Indicators of Chaos in Gaussian Models on Statistical Manifolds of Negative Ricci Curvature
    Carlo Cafaro
    International Journal of Theoretical Physics, 2008, 47 : 2924 - 2933
  • [48] Information-geometric indicators of chaos in Gaussian models on statistical manifolds of negative Ricci curvature
    Cafaro, Carlo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (11) : 2924 - 2933
  • [49] CONTROLLING CHAOS BY CHAOS IN GEOPHYSICAL SYSTEMS
    BRINDLEY, J
    KAPITANIAK, T
    KOCAREV, L
    GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (10) : 1257 - 1260
  • [50] Discrete Gaussian Curvature Flow for Piecewise Constant Gaussian Curvature Surface
    Hayashi, Kazuki
    Jikumaru, Yoshiki
    Ohsaki, Makoto
    Kagaya, Takashi
    Yokosuka, Yohei
    COMPUTER-AIDED DESIGN, 2021, 134 (134)