Diffusion method in random matrix theory

被引:7
|
作者
Grela, Jacek [1 ,2 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-40348 Krakow, Poland
[2] Jagiellonian Univ, Mark Kac Complex Syst Res Ctr, PL-40348 Krakow, Poland
关键词
random matrix theory; characteristic polynomials; diffusion equation; CHARACTERISTIC-POLYNOMIALS; EQUATION;
D O I
10.1088/1751-8113/49/1/015201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a calculational tool useful in computing ratios and products of characteristic polynomials averaged over Gaussian measures with an external source. The method is based on Dyson's Brownian motion and Grassmann/ complex integration formulas for determinants. The resulting formulas are exact for finite matrix size N and form integral representations convenient for large N asymptotics. Quantities obtained by the method are interpreted as averages over standard matrix models. We provide several explicit and novel calculations with special emphasis on the beta = 2 Girko-Ginibre ensembles.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Quantum fluctuations and random matrix theory
    Duras, MM
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS, 2003, 5111 : 456 - 459
  • [42] Centrality of the collision and random matrix theory
    Z.Wazir
    中国物理C, 2010, (10) : 1593 - 1597
  • [43] Raney Distributions and Random Matrix Theory
    Peter J. Forrester
    Dang-Zheng Liu
    Journal of Statistical Physics, 2015, 158 : 1051 - 1082
  • [44] Dynamical approach to random matrix theory
    Tao, Terence
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 161 - 169
  • [45] Tensor product random matrix theory
    Altland, Alexander
    de Miranda, Joaquim Telles
    Micklitz, Tobias
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [46] Random matrix theory and the Anderson model
    Bellissard, J
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 739 - 754
  • [47] Random Matrix Theory in Cd isotopes
    Majarshin, A. J.
    Luo, Yan-An
    Pan, Feng
    Draayer, Jerry P.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (10)
  • [48] Random matrix theory and mesoscopic fluctuations
    Seba, P
    PHYSICAL REVIEW B, 1996, 53 (19): : 13024 - 13028
  • [49] Law of addition in random matrix theory
    Zee, A
    NUCLEAR PHYSICS B, 1996, 474 (03) : 726 - 744
  • [50] Riemann Zeros and Random Matrix Theory
    N. C. Snaith
    Milan Journal of Mathematics, 2010, 78 : 135 - 152