Diffusion method in random matrix theory

被引:7
|
作者
Grela, Jacek [1 ,2 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-40348 Krakow, Poland
[2] Jagiellonian Univ, Mark Kac Complex Syst Res Ctr, PL-40348 Krakow, Poland
关键词
random matrix theory; characteristic polynomials; diffusion equation; CHARACTERISTIC-POLYNOMIALS; EQUATION;
D O I
10.1088/1751-8113/49/1/015201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a calculational tool useful in computing ratios and products of characteristic polynomials averaged over Gaussian measures with an external source. The method is based on Dyson's Brownian motion and Grassmann/ complex integration formulas for determinants. The resulting formulas are exact for finite matrix size N and form integral representations convenient for large N asymptotics. Quantities obtained by the method are interpreted as averages over standard matrix models. We provide several explicit and novel calculations with special emphasis on the beta = 2 Girko-Ginibre ensembles.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Denoising of diffusion MRI using random matrix theory
    Veraart, Jelle
    Novikov, Dmitry S.
    Christiaens, Daan
    Ades-Aron, Benjamin
    Sijbers, Jan
    Fieremans, Els
    NEUROIMAGE, 2016, 142 : 384 - 396
  • [2] Diffusion MRI Noise Mapping Using Random Matrix Theory
    Veraart, Jelle
    Fieremans, Els
    Novikov, Dmitry S.
    MAGNETIC RESONANCE IN MEDICINE, 2016, 76 (05) : 1582 - 1593
  • [3] The supersymmetric method in random matrix theory and applications to QCD
    Verbaarschot, J
    LATIN-AMERICAN SCHOOL OF PHYSICS - XXXV ELAF: SUPERSYMMETRIES IN PHYSICS AND ITS APPLICATIONS, 2005, 744 : 277 - 362
  • [4] Several applications of the moment method in random matrix theory
    Sodin, Sasha
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 451 - 475
  • [5] On the Diaconis-Shahshahani Method in Random Matrix Theory
    Michael Stolz
    Journal of Algebraic Combinatorics, 2005, 22 : 471 - 491
  • [6] On the Diaconis-Shahshahani method in random matrix theory
    Stolz, M
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2005, 22 (04) : 471 - 491
  • [7] On the Diaconis-Shahshahani method in random matrix theory
    Stolz, Michael
    Journal of Algebraic Combinatorics, 2005, 22 (04): : 471 - 491
  • [8] An improved subspace weighting method using random matrix theory
    Gao, Yu-meng
    Li, Jiang-hui
    Bai, Ye-chao
    Wang, Qiong
    Zhang, Xing-gan
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (09) : 1302 - 1307
  • [9] An improved subspace weighting method using random matrix theory
    Yu-meng Gao
    Jiang-hui Li
    Ye-chao Bai
    Qiong Wang
    Xing-gan Zhang
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1302 - 1307
  • [10] Sequential method for speech segmentation based on Random Matrix Theory
    Faraji, Neda
    Ahadi, Seyed Mohammad
    Sheikhzadeh, Hamid
    IET SIGNAL PROCESSING, 2013, 7 (07) : 625 - 633