Stability of singular periodic motions in a vibro-impact oscillator

被引:11
|
作者
Janin, O [1 ]
Lamarque, CH [1 ]
机构
[1] Ecole Natl Travaux Publ Etat, Lab Geomat, URA 1652, CNRS, F-69518 Vaulx En Velin, France
关键词
impact; Poincare map; stability;
D O I
10.1023/A:1015632510298
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A single-degree-of-freedom vibro-impact oscillator is considered. For some values of parameters, a non-differentiable fixed point of the Poincare map exists: a local expansion of the Poincare map around such a point is given, including a square root term on the impact side. From this approximate map, the stability of the fixed point can be investigated, and it is shown that the periodic solution is stable when the Floquet multipliers are real.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [31] Statistical description of the limiting set for chaotic motions of the vibro-impact system
    Gorbikov, S. P.
    Men'shenina, A. V.
    AUTOMATION AND REMOTE CONTROL, 2007, 68 (10) : 1794 - 1800
  • [32] Structural stability of invariant sets of vibro-impact systems
    Kryzhevich S.G.
    Vestnik St. Petersburg University: Mathematics, 2007, 40 (1) : 46 - 51
  • [33] Melnikov analysis of subharmonic motions for a class of bistable vibro-impact oscillators
    Shuangbao Li
    Ran Sun
    Nonlinear Dynamics, 2023, 111 : 1047 - 1069
  • [34] Existence and stability of the grazing periodic trajectory in a two-degree-of-freedom vibro-impact system
    Xu, Jieqiong
    Li, Qunhong
    Wang, Nan
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5537 - 5546
  • [35] Analytical-numerical studies on the stability and bifurcations of periodic motion in the vibro-impact systems with clearances
    Xu, Huidong
    Ji, Jinchen
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 109 : 155 - 165
  • [36] Transition and coexistence characteristics of periodic motions of a single-degree-of-freedom vibro-impact system with dry friction
    Li, Deyang
    Li, Meng
    Wu, Shaopei
    Li, Guofang
    Ding, Wangcai
    Ding, Jie
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (10): : 52 - 63
  • [37] Stability analysis of vibro-impact systems with stochastic parameters
    Ding, WC
    Xie, JH
    ADVANCES IN STOCHASTIC STRUCTURAL DYNAMICS, 2003, : 71 - 78
  • [38] Statistical description of the limiting set for chaotic motions of the vibro-impact system
    S. P. Gorbikov
    A. V. Men’shenina
    Automation and Remote Control, 2007, 68 : 1794 - 1800
  • [39] Transition law of adjacent fundamental motions in vibro-impact system with progression
    Lü X.
    Luo G.
    1600, Chinese Society of Theoretical and Applied Mechanics (49): : 1091 - 1102
  • [40] Analysis of forces in vibro-impact and hot vibro-impact turning of advanced alloys
    Muhammad, R.
    Maurotto, A.
    Roy, A.
    Silberschmidt, V. V.
    ADVANCES IN EXPERIMENTAL MECHANICS VIII, 2011, 70 : 315 - 320