Stability of singular periodic motions in a vibro-impact oscillator

被引:11
|
作者
Janin, O [1 ]
Lamarque, CH [1 ]
机构
[1] Ecole Natl Travaux Publ Etat, Lab Geomat, URA 1652, CNRS, F-69518 Vaulx En Velin, France
关键词
impact; Poincare map; stability;
D O I
10.1023/A:1015632510298
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A single-degree-of-freedom vibro-impact oscillator is considered. For some values of parameters, a non-differentiable fixed point of the Poincare map exists: a local expansion of the Poincare map around such a point is given, including a square root term on the impact side. From this approximate map, the stability of the fixed point can be investigated, and it is shown that the periodic solution is stable when the Floquet multipliers are real.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [1] Stability of Singular Periodic Motions in a Vibro-Impact Oscillator
    O. Janin
    C. H. Lamarque
    Nonlinear Dynamics, 2002, 28 : 231 - 241
  • [2] Stability of the periodic motions of the vibro-impact systems
    Brîndeu, L
    CHAOS SOLITONS & FRACTALS, 2000, 11 (15) : 2493 - 2503
  • [3] Periodic motions and bifurcations of a vibro-impact system
    Luo, Guanwei
    Me, Jianhua
    Zhu, Xifeng
    Zhang, Jiangang
    CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1340 - 1347
  • [4] Periodic motions and bifurcations of a vibro-impact system with progressive motions
    Lü X.
    Luo G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2018, 37 (06): : 162 - 167
  • [5] Coexistence and stability of periodic motions in a vibro-impact system with two degrees of freedom
    Li, Qunhong
    Chen, Liang
    Huangfu, Yugao
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 105 - 110
  • [6] Periodic motions, bifurcation, and hysteresis of the vibro-impact system
    Cheng, Jianlian
    Xu, Hui
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2007, 35 (02) : 179 - 203
  • [7] Complex Structure of Periodic Orbits in an Oscillator with a Vibro-Impact Attachment
    Lee, Young Sup
    Nucera, Francesco
    Vakakis, Alexander F.
    McFarland, D. Michael
    Bergman, Lawrence A.
    VIBRO-IMPACT DYNAMICS OF OCEAN SYSTEMS AND RELATED PROBLEMS, 2009, 44 : 173 - +
  • [8] Complex structure of periodic orbits in an oscillator with a vibro-impact attachment
    Lee, Young Sup
    Nucera, Francesco
    Vakakis, Alexander F.
    Michael McFarland, D.
    Bergman, Lawrence A.
    Lecture Notes in Applied and Computational Mechanics, 2009, 44 : 173 - 178
  • [9] Periodic motions and bifurcations of vibro-impact systems near a strong resonance point
    Luo, Guanwei
    Zhang, Yanlong
    Zhang, Jiangang
    Xie, Jianhua
    NONLINEAR SCIENCE AND COMPLEXITY, 2007, 1 : 193 - +
  • [10] Auxiliary Sliding Motions of Vibro-Impact Systems
    S. P. Gorbikov
    Automation and Remote Control, 2020, 81 : 1413 - 1430