A facile method to increase the charge storage capability of polymer nanocomposites

被引:104
|
作者
Ameli, Aboutaleb [1 ]
Wang, Sai [2 ]
Kazemi, Yasamin [2 ]
Park, Chul B. [2 ]
Poetschke, Petra [3 ]
机构
[1] Washington State Univ Tri Cities, Sch Mech & Mat Engn, Adv Composites Lab, Richland, WA 99354 USA
[2] Univ Toronto, Dept Mech & Ind Engn, Microcellular Plast Mfg Lab, Toronto, ON M55 3G8, Canada
[3] Leibniz Inst Polymer Res Dresden IPF, D-01069 Dresden, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Dielectric permittivity; Dielectric loss; Charge storage; Carbon nanotube; Microceltular structure; LOW DIELECTRIC LOSS; PLANE ELECTRICAL-CONDUCTIVITY; LOW PERCOLATION; CARBON NANOTUBES; COMPOSITES; PERMITTIVITY; FOAMS; CONSTANT;
D O I
10.1016/j.nanoen.2015.04.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A class of microcellular polymer nanocomposites of multi-walled carbon nanotubes (MWCNT) is reported that exhibits a stable and significantly high dielectric permittivity coupled with a stable and low dielectric loss in a wide range of frequency. Polypropylene (PP)-MWCNT nanocomposites with a cellular structure were prepared by melt mixing followed by physical foaming in an injection molding process. The generation of a cellular structure inside the nanocomposites provides a unique planar-like arrangement of the MWCNTs around the cells. This enhances the dielectric permittivity of nanocomposites up to an order of magnitude. Therefore, microcellular PP-1.25 vol% MWCNT presents a dielectric permittivity of epsilon' = 57.2 and a dielectric loss of tan delta=0.05 at 0.1 MHz, highly superior to the best values of the solid nanocomposites prepared by regular compression molding (epsilon' =14.1 and tan delta=0.39) and by injection molding (epsilon' =17.8 and tan delta=0.04). Also, microcellular PP-1.66 vol% MWCNT exhibits epsilon'=95.6 and tan delta=0.14, which surpasses the dielectric performances reported in the literature. Hence, these nanocomposites with a cellular structure provide a novel and general approach to develop microscopically tailored structures for dielectric applications using facile methods. Such dielectrics can be used for energy storage in modern electronics and electrical power systems. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [41] Ferroelectric Polymer Based Nanocomposites for Electrical Energy Storage
    Li, Junjun
    Khanchaitit, Paisan
    Wang, Qing
    FUNCTIONAL POLYMER NANOCOMPOSITES FOR ENERGY STORAGE AND CONVERSION, 2010, 1034 : 37 - 52
  • [42] Development of polymer nanocomposites with sodium alanate for hydrogen storage
    Goncalves Beatrice, Cesar Augusto
    Moreira, Bruna Rodrigues
    de Oliveira, Amanda Dantas
    Passador, Fabio Roberto
    de Almeida Neto, Gabriel Rodrigues
    Leiva, Daniel Rodrigo
    Pessan, Luiz Antonio
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (08) : 5337 - 5346
  • [43] An all-polymer charge storage device
    Gofer, Y
    Sarker, H
    Killian, JG
    Poehler, TO
    Searson, PC
    APPLIED PHYSICS LETTERS, 1997, 71 (11) : 1582 - 1584
  • [44] All-polymer charge storage device
    Gofer, Yossef
    Sarker, Haripada
    Killian, Jeffrey G.
    Poehler, Theodore O.
    Searson, Peter C.
    Applied Physics Letters, 1997, 71 (11):
  • [45] Polymer/BaTiO3 nanocomposites for energy storage
    Kim, Philseok
    Doss, Natalie
    Tillotson, John
    Hotchkiss, Peter J.
    Li, Jiangyu
    Marder, Seth R.
    Perry, Joseph W.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [46] Polymer Dielectrics and Their Nanocomposites for Capacitive Energy Storage Applications
    Cheng, Sang
    Li, Yu-shu
    Liang, Jia-jie
    Li, Qi
    ACTA POLYMERICA SINICA, 2020, 51 (05): : 469 - 483
  • [47] Polymer nanocomposites for energy storage, energy saving, and anticorrosion
    Yang, Chongling
    Wei, Huige
    Guan, Litao
    Guo, Jiang
    Wang, Yiran
    Yan, Xingru
    Zhang, Xi
    Wei, Suying
    Guo, Zhanhu
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (29) : 14929 - 14941
  • [48] Polymer nanocomposites: Interfacial properties and capacitive energy storage
    Drakopoulos, Stavros X.
    Wu, Jiaen
    Maguire, Shawn M.
    Srinivasan, Sneha
    Randazzo, Katelyn
    Davidson, Emily C.
    Priestley, Rodney D.
    PROGRESS IN POLYMER SCIENCE, 2024, 156
  • [49] Polymer/liquid crystal nanocomposites for energy storage applications
    Labeeb, A. M.
    Ibrahim, S. A.
    Ward, A. A.
    Abd-El-Messieh, S. L.
    POLYMER ENGINEERING AND SCIENCE, 2020, 60 (10): : 2529 - 2540
  • [50] Internal stress storage in shape memory polymer nanocomposites
    Gall, K
    Dunn, ML
    Liu, YP
    Stefanic, G
    Balzar, D
    APPLIED PHYSICS LETTERS, 2004, 85 (02) : 290 - 292