Euclidean Jordan algebras;
unitary highest weight module;
quadratic relation;
Joseph Ideal;
HERMITIAN SYMMETRIC-SPACES;
ORBIT;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let co(J) be the conformal algebra of a simple Euclidean Jordan algebra J. We show that a (non-trivial) unitary highest weight co (J)-module has the smallest positive Gelfand-Kirillov dimension if and only if a certain quadratic relation is satisfied in the universal enveloping algebra U(ca(J)(c)). In particular, we find an quadratic element in U(co(J)(C)). A prime ideal in U(co(J)(C)) equals the Joseph ideal if and only if it contains this quadratic element.
机构:
Shanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R ChinaShanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China
Wang, Guoqiang
Tao, Jiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Loyola Univ Maryland, Dept Math & Stat, Baltimore, MD 21210 USAShanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China
Tao, Jiyuan
Kong, Lingchen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Dept Appl Math, Beijing 100044, Peoples R ChinaShanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China