Near-blowoff dynamics of a bluff-body stabilized flame

被引:104
|
作者
Nair, Suraj
Lieuwen, Tim
机构
[1] Woodward Ind Controls, Ft Collins, CO 80525 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
D O I
10.2514/1.24650
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper describes an experimental investigation of the dynamics of a near-blowoff, bluff-body stabilized flame. This work is motivated by a number of prior observations showing that near-blowoff flames exhibit enhanced unsteadiness. Laser sheet imaging studies and particle image velocimetry velocity field measurements show that the transient dynamics of these flames occur in two distinct stages before blowoff. The first stage is manifested by the presence of localized "holes" in the flame sheet, at locations where the instantaneous stretch rate exceeds the extinction stretch rate. During this stage, the overall flame and wake dynamics appear essentially unaltered and, moreover, the flame can persist indefinitely, although with enhanced unsteadiness. As the equivalence ratio is further decreased, the size of the flame region affected and the duration of these events increases monotonically. As the blowoff point is approached further, this leads to the second stage, large-scale alterations of the wake dynamics, violent flapping of the flame front, and even larger straining of the flame. In some cases, the flow in this second stage bears striking resemblance to the asymmetric von Karman type flowfield.
引用
收藏
页码:421 / 427
页数:7
相关论文
共 50 条
  • [21] Lattice-Boltzmann modeling of a turbulent bluff-body stabilized flame
    Tayyab, M.
    Zhao, S.
    Boivin, P.
    PHYSICS OF FLUIDS, 2021, 33 (03)
  • [22] Investigation of the influence of the bluff-body temperature on a lean premixed DME/air flame approaching blowoff
    Wang, Xiaoyang
    Liu, Kunpeng
    Fu, Chen
    Wang, Meng
    Yu, Juan
    Yan, Yingwen
    Li, Jinghua
    Ge, Xiaonan
    Gao, Yi
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2024, 152
  • [23] INFLUENCE OF LAMINAR FLAME SPEED ON THE BLOWOFF VELOCITY OF BLUFF-BODY-STABILIZED FLAMES
    RIZK, NK
    LEFEBVRE, AH
    AIAA JOURNAL, 1984, 22 (10) : 1444 - 1447
  • [24] VELOCITY-MEASUREMENTS IN A TURBULENT NONPREMIXED BLUFF-BODY STABILIZED FLAME
    SCHEFER, RW
    NAMAZIAN, M
    KELLY, J
    COMBUSTION SCIENCE AND TECHNOLOGY, 1987, 56 (4-6) : 101 - 138
  • [25] Large-eddy simulation of a bluff-body stabilized nonpremixed flame
    Kempf, A
    Lindstedt, RP
    Janicka, J
    COMBUSTION AND FLAME, 2006, 144 (1-2) : 170 - 189
  • [26] On the Influence of Fuel Distribution on the Flame Structure of Bluff-Body Stabilized Flames
    Lovett, Jeffery A.
    Ahmed, Kareem
    Bibik, Oleksandr
    Smith, Andrew G.
    Lubarsky, Eugene
    Menon, Suresh
    Zinn, Ben T.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2014, 136 (04):
  • [28] ON THE INFLUENCE OF FUEL DISTRIBUTION ON THE FLAME STRUCTURE OF BLUFF-BODY STABILIZED FLAMES
    Lovett, Jeffery A.
    Ahmed, Kareem A.
    Bibik, Oleksandr
    Smith, Andrew G.
    Lubarsky, Eugene
    Menon, Suresh
    Zinn, Ben T.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 1B, 2013,
  • [29] Experimental study on the interactions for bluff-body and swirl in stabilized flame process
    Bing Ge
    Shu-Sheng Zang
    Journal of Thermal Science, 2012, 21 : 88 - 96
  • [30] Effects of direct current electric field on the blowoff characteristics of bluff-body stabilized conical premixed flames
    Ata, A
    Cowart, JS
    Vranos, A
    Cetegen, BM
    COMBUSTION SCIENCE AND TECHNOLOGY, 2005, 177 (07) : 1291 - 1304