Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature

被引:160
|
作者
Wu, H. C. [1 ]
Kumar, A. [2 ]
Wang, J. [3 ]
Bi, X. F. [1 ]
Tome, C. N. [2 ]
Zhang, Z. [4 ]
Mao, S. X. [5 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
[3] Univ Nebraska, Mech & Mat Engn, Lincoln, NE 68588 USA
[4] Zhejiang Univ, State Key Lab Si Mat, Dept Mat Sci, Hangzhou 310003, Zhejiang, Peoples R China
[5] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; PHASE-TRANSFORMATION; TWINNING DISLOCATIONS; INTERFACE DEFECTS; HCP; TRANSITION; BOUNDARIES; ZIRCONIUM; BEHAVIOR; COBALT;
D O I
10.1038/srep24370
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Combining transmission electron microscopes and density functional theory calculations, we report the nucleation and growth mechanisms of room temperature rolling induced face-centered cubic titanium (fcc-Ti) in polycrystalline hexagonal close packed titanium (hcp-Ti). Fcc-Ti and hcp-Ti take the orientation relation: < 0001 >(hcp)parallel to < 001 >(fcc) and {10 (1) over bar0}(hcp)parallel to{110}(fcc), different from the conventional one. The nucleation of fcc-Ti is accomplished via pure-shuffle mechanism with a minimum stable thickness of three atomic layers, and the growth via shear-shuffle mechanisms through gliding two-layer disconnections or pure-shuffle mechanisms through gliding four-layer disconnections. Such phase transformation offers an additional plastic deformation mode comparable to twinning.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Synthesis and characterization of nanophase face-centered-cubic titanium
    Jankowski, AF
    Wall, MA
    NANOSTRUCTURED MATERIALS, 1996, 7 (1-2): : 89 - 94
  • [32] Formation of face-centered-cubic titanium by mechanical attrition
    Manna, I. (imanna@metal.iitkgp.ernet.in), 1600, American Institute of Physics Inc. (93):
  • [33] FACE-CENTERED CUBIC TITANIUM BORONITRIDES OBTAINED BY CVD
    LEBUGLE, E
    MONTEL, G
    PEYTAVY, JL
    PASTOR, H
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 1980, 5 (08): : 679 - 679
  • [34] Texture randomization of hexagonal close packed phase through hexagonal close packed/body centered cubic phase transformation in Mg-Sc alloy
    Ogawa, Yukiko
    Ando, Daisuke
    Sutou, Yuji
    Koike, Junichi
    SCRIPTA MATERIALIA, 2017, 128 : 27 - 31
  • [35] Formation of face-centered cubic and tetragonal titanium oxynitride by low temperature annealing of ball milled titanium powder in air
    Bolokang, A. S.
    Motaung, D. E.
    Arendse, C. J.
    Muller, T. F. G.
    ADVANCED POWDER TECHNOLOGY, 2015, 26 (01) : 169 - 174
  • [36] Synthesis and magnetic properties of face-centered-cubic and hexagonal-close-packed Ni nanoparticles through polyol process
    Chinnasamy, C.N.
    Jeyadevan, B.
    Shinoda, K.
    Tohji, K.
    Narayanasamy, A.
    Sato, K.
    Hisano, S.
    Journal of Applied Physics, 2005, 97 (10):
  • [37] Synthesis and magnetic properties of face-centered-cubic and hexagonal-close-packed Ni nanoparticles through polyol process
    Chinnasamy, CN
    Jeyadevan, B
    Shinoda, K
    Tohji, K
    Narayanasamy, A
    Sato, K
    Hisano, S
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [38] CO Dissociation on Face-Centered Cubic and Hexagonal Close-Packed Nickel Catalysts: A First-Principles Study
    Liu, Jin-Xun
    Zhang, Bing-Yan
    Chen, Pei-Pei
    Su, Hai-Yan
    Li, Wei-Xue
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (43): : 24895 - 24903
  • [39] Proposed mechanism of twin formation during hexagonal-close-packed structure to face-centered-cubic phase transition
    Yang, J. X.
    Liu, L. C.
    Gong, H. R.
    Song, M.
    SOLID STATE COMMUNICATIONS, 2018, 284 : 40 - 44
  • [40] Interaction of {11■2} twin variants in hexagonal close-packed titanium
    Xiaocui Li
    Jingwei Li
    Bo Zhou
    Mingchao Yu
    Manling Sui
    Journal of Materials Science & Technology, 2019, 35 (04) : 660 - 666