G. Polya described in [1] the distribution of zeros of the function V(z) = integral(0)(1) f(t) sin zt,dt f is an element of L(0,1) under assumptions that f(t) is positive, increasing, convex function in interval (0, 1), and f(0 + 0) = 0. The condition f (0 + 0) = 0 is essential for the Polya proof. Our aim is to study the distribution of zeros of V(z) when this condition is omitted.
机构:
Washington Univ, Biomedical Computer, Lab, St. Louis, MO, USA, Washington Univ, Biomedical Computer Lab, St. Louis, MO, USAWashington Univ, Biomedical Computer, Lab, St. Louis, MO, USA, Washington Univ, Biomedical Computer Lab, St. Louis, MO, USA
机构:
Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
Lange, Kenneth
AMERICAN MATHEMATICAL MONTHLY,
2015,
122
(10):
: 1005
-
1007