Ternary linear codes and quadrics

被引:0
|
作者
Yoshida, Yuri [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math & Informat Sci, Osaka 5998531, Japan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
基金
日本学术振兴会;
关键词
EXTENDABILITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an [n, k, d](3) code C with gcd (d, 3) = 1, we define a map w(G) from Sigma = PG(k - 1, 3) to the set of weights of codewords of C through a generator matrix G. A t-flat Pi is Sigma called an (i, j)(t) flat if (i, j) = (vertical bar Pi boolean AND F(0)vertical bar, vertical bar Pi boolean AND F(1)vertical bar) , where F(0) = {P is an element of Sigma vertical bar w(G) (P) equivalent to 0 (mod3)}, F(1) - {P is an element of Sigma vertical bar w(G) (P) not equivalent to 0, d (mod3)}. We give geometric characterizations of (i, j)(t) flats, which involve quadrics. As an application to the optimal linear codes problem, we prove the non-existence of a [305, 6, 202](3)code, which is a new result.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Covering radii of ternary linear codes of small dimensions and codimensions
    Baicheva, TS
    Velikova, ED
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 2057 - 2061
  • [42] Optimal binary and ternary linear codes with hull dimension one
    Mankean, Todsapol
    Jitman, Somphong
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 64 (1-2) : 137 - 155
  • [43] On the functional codes defined by quadrics and Hermitian varieties
    Bartoli, D.
    De Boeck, M.
    Fanali, S.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 71 (01) : 21 - 46
  • [44] A Method for Constructing Ternary Linear Complementary Dual Codes br
    Huang, Shan
    Zhu, Shixin
    Li, Jin
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (01) : 353 - 360
  • [45] Optimal binary and ternary linear codes with hull dimension one
    Todsapol Mankean
    Somphong Jitman
    Journal of Applied Mathematics and Computing, 2020, 64 : 137 - 155
  • [46] A new extension theorem for ternary linear codes and its application
    Kanda, Hitoshi
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 67
  • [47] NEW OPTIMAL TERNARY LINEAR CODES OF DIMENSION-6
    GULLIVER, TA
    ARS COMBINATORIA, 1995, 40 : 97 - 108
  • [48] New quasi-twisted degenerate ternary linear codes
    Daskalov, R
    Hristov, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) : 2259 - 2263
  • [49] Construction of binary and ternary self-orthogonal linear codes
    Kohnert, Axel
    Wassermann, Alfred
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (09) : 2118 - 2123
  • [50] Linear codes of 2-designs associated with subcodes of the ternary generalized Reed–Muller codes
    Cunsheng Ding
    Chunming Tang
    Vladimir D. Tonchev
    Designs, Codes and Cryptography, 2020, 88 : 625 - 641