Synergistic function of doping and ligand engineering to enhance the photostability and electroluminescence performance of CsPbBr3 quantum dots

被引:8
|
作者
Chen, Junfei [1 ,2 ]
Shen, Zhaohui [1 ,2 ]
Liu, Pengbo [1 ,2 ]
Sun, Zhengyang [1 ,2 ]
Liu, Jay Guoxu [3 ]
Shen, Chongyu [3 ]
Song, Dandan [1 ,2 ]
Zhao, Suling [1 ,2 ]
Xu, Zheng [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Minist Educ, Key Lab Luminescence & Opt Informat, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Inst Optoelect Technol, Beijing 100044, Peoples R China
[3] ShineOn Beijing Technol Co Ltd, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
CsPbBr3; perovskite; quantum dots; ligand engineering; photostability; light-emitting diodes; electroluminescence; PEROVSKITE NANOCRYSTALS; EFFICIENT; BINDING; FILMS; BLUE;
D O I
10.1088/1361-6528/abfc73
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The photostability issue of CsPbX3 (X = Cl, Br, I) quantum dots (QDs) is one of the key origins for the degradation of their luminescence performance, which hinders their application in lighting and displays. Herein, we report a new method combining doping and ligand engineering, which effectively improves the photostability of CsPbBr3 QDs and the performance of QD light-emitting diodes (QLEDs). In this method, ZnBr2 is doped into CsPbBr3 QDs to reduce surface anion defects; didodecyldimethyl ammonium bromide (DDAB) and tetraoctylammonium bromide (TOAB) hybrid ligands, which have strong adsorption with QDs, are employed to protect the surface and enhance the conductivity of QD layer in QLEDs. The photoluminescence (PL) and transmission electron microscopy measurements prove the effectively improved photostability of CsPbX3 QDs. Moreover, reduced defects and improved conductivity by doping and hybrid ligands treatment also enable the improved electroluminescence performance of CsPbX3 QDs. The maximum luminance and external quantum efficiency of the QLED with optimized CsPbX3 QDs are 3518.9 cd m(-2) and 5.07%, which are 3.6 and 2.1 times than that of the control device, respectively. Combining doping and hybrid ligands makes perovskite QDs have an extremely promising prospect in future applications of high-definition displays, high-quality lighting, as well as solar cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Excitons and Biexciton Dynamics in Single CsPbBr3 Perovskite Quantum Dots
    Li, Bin
    Huang, He
    Zhang, Guofeng
    Yang, Changgang
    Guo, Wenli
    Chen, Ruiyun
    Qin, Chengbing
    Gao, Yan
    Biju, Vasudevan P.
    Rogach, Andrey L.
    Xiao, Liantuan
    Jia, Suotang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (24): : 6934 - 6940
  • [42] CsPbBr3 Quantum Dots as Artificial Antennas to Enhance the Light-Harvesting Efficiency and Photoresponse of Zinc Porphyrin
    Li, Tianfeng
    Zhao, Zhenmin
    Gu, Cheng
    Ma, Jicun
    Kuang, Yanmin
    Wang, Xiaojuan
    Mao, Yanli
    Ran, Xia
    Guo, Lijun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (09): : 5069 - 5078
  • [43] Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure
    Li Shao-he
    Li Jiu-sheng
    Applied Physics B, 2018, 124
  • [44] Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots
    Li Bin
    Miao Xiang-Yang
    ACTA PHYSICA SINICA, 2021, 70 (20)
  • [45] Precipitation and Optical Properties of CsPbBr3 Quantum Dots in Phosphate Glasses
    Ai, Bing
    Liu, Chao
    Wang, Jing
    Xie, Jun
    Han, Jianjun
    Zhao, Xiujian
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (09) : 2875 - 2877
  • [46] Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure
    Li Shao-he
    Li Jiu-sheng
    APPLIED PHYSICS B-LASERS AND OPTICS, 2018, 124 (12):
  • [47] Energy transfer assisted solvent effects on CsPbBr3 quantum dots
    Mei, Jingjing
    Wang, Fei
    Wang, Yunpeng
    Tian, Cancan
    Liu, Hongzhen
    Zhao, Dongxu
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (42) : 11076 - 11082
  • [48] Physical properties of liquid crystals doped with CsPbBr3 quantum dots
    Liu, Xuelian
    Xia, Xiang
    Yang, Le
    Zhu, Jun
    Xu, Miao
    Zhang, Guobing
    Xia, Guo
    Qiu, Longzhen
    Lu, Hongbo
    LIQUID CRYSTALS, 2021, 48 (10) : 1357 - 1364
  • [49] Narrow linewidth CsPbBr3 perovskite quantum dots microsphere lasers
    Yu, Huimin
    Su, Xueqiong
    Pan, Yong
    Gao, Dongwen
    Wang, Jin
    Chen, Ruixiang
    Zhang, Junhe
    Dou, Fei
    Zhang, Xinping
    Ge, Kun
    Shi, Xiaoyu
    Zhai, Tianrui
    Wang, Li
    OPTICAL MATERIALS, 2022, 133
  • [50] Tunable photoluminescence of CsPbBr3 perovskite quantum dots for their physical research
    Chen, Haitao
    Guo, Anqi
    Zhu, Jun
    Cheng, Liwen
    Wang, Qiang
    APPLIED SURFACE SCIENCE, 2019, 465 : 656 - 664