X-ray Thomson scattering in high energy density plasmas

被引:622
|
作者
Glenzer, Siegfried H. [1 ]
Redmer, Ronald [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Univ Rostock, Inst Phys, D-18051 Rostock, Germany
关键词
Compton effect; dielectric function; plasma density; plasma inertial confinement; plasma oscillations; plasma probes; plasma temperature; plasmons; spectral line breadth; X-ray scattering; EQUATION-OF-STATE; LINDHARD DIELECTRIC FUNCTION; NATIONAL-IGNITION-FACILITY; CONVERSION EFFICIENCY; EXTREME-ULTRAVIOLET; GRAZING-INCIDENCE; K-ALPHA; ELECTRICAL-CONDUCTIVITY; COLLECTIVE DESCRIPTION; COMPTON-SCATTERING;
D O I
10.1103/RevModPhys.81.1625
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Accurate x-ray scattering techniques to measure the physical properties of dense plasmas have been developed for applications in high energy density physics. This class of experiments produces short-lived hot dense states of matter with electron densities in the range of solid density and higher where powerful penetrating x-ray sources have become available for probing. Experiments have employed laser-based x-ray sources that provide sufficient photon numbers in narrow bandwidth spectral lines, allowing spectrally resolved x-ray scattering measurements from these plasmas. The backscattering spectrum accesses the noncollective Compton scattering regime which provides accurate diagnostic information on the temperature, density, and ionization state. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions and quantum effects. Dense matter theory relates scattering spectra with the dielectric function and structure factors that determine the physical properties of matter. Applications to radiation-heated and shock-compressed matter have demonstrated accurate measurements of compression and heating with up to picosecond temporal resolution. The ongoing development of suitable x-ray sources and facilities will enable experiments in a wide range of research areas including inertial confinement fusion, radiation hydrodynamics, material science, or laboratory astrophysics.
引用
收藏
页码:1625 / 1663
页数:39
相关论文
共 50 条
  • [41] Analysis of X-ray and Thomson scattering data from non-LTE Nb and Ta plasmas
    Bastiani-Ceccotti, S.
    Bourgaux, A-C
    Bowen, C.
    Dorchies, F.
    Gilleron, F.
    Marques, J-R
    Pain, J-C
    Silvert, V.
    Vinci, T.
    HIGH ENERGY DENSITY PHYSICS, 2015, 16 : 41 - 52
  • [42] High energy X-Ray surface and interface scattering
    Reichert, Harald
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C61 - C61
  • [43] High-energy X-ray diffuse scattering
    Ramsteiner, I. B.
    Schoeps, A.
    Reichert, H.
    Dosch, H.
    Honkimaeki, V.
    Zhong, Z.
    Hastings, J. B.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2009, 42 : 392 - 400
  • [44] Application of soft x-ray lasers for probing high density plasmas
    DaSilva, LB
    Barbee, TW
    Cauble, R
    Celliers, P
    Decker, CD
    Kalantar, DH
    Key, MH
    London, RA
    Moreno, JC
    Trebes, JE
    Wan, AS
    Weber, F
    X-RAY LASERS 1996, 1996, (151): : 496 - 503
  • [45] Analysis of x-ray spectra of laser produced high density plasmas
    Koike, F
    Honda, K
    Kawamura, T
    Mima, K
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1997, 58 (4-6): : 699 - 702
  • [46] Analysis of X-ray spectra of laser produced high density plasmas
    Koike, Fumihiro
    Honda, K.
    Kawamura, T.
    Mima, K.
    Journal of Quantitative Spectroscopy and Radiative Transfer, 58 (4-6): : 699 - 702
  • [47] Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source
    Du, Yingchao
    Yan, Lixin
    Hua, Jianfei
    Du, Qiang
    Zhang, Zhen
    Li, Renkai
    Qian, Houjun
    Huang, Wenhui
    Chen, Huaibi
    Tang, Chuanxiang
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (05):
  • [48] X-Ray Thomson-Scattering Measurements of Density and Temperature in Shock-Compressed Beryllium
    Lee, H. J.
    Neumayer, P.
    Castor, J.
    Doeppner, T.
    Falcone, R. W.
    Fortmann, C.
    Hammel, B. A.
    Kritcher, A. L.
    Landen, O. L.
    Lee, R. W.
    Meyerhofer, D. D.
    Munro, D. H.
    Redmer, R.
    Regan, S. P.
    Weber, S.
    Glenzer, S. H.
    PHYSICAL REVIEW LETTERS, 2009, 102 (11)
  • [49] Probing near-solid density plasmas using soft x-ray scattering
    Toleikis, S.
    Bornath, T.
    Doeppner, T.
    Duesterer, S.
    Faeustlin, R. R.
    Foerster, E.
    Fortmann, C.
    Glenzer, S. H.
    Goede, S.
    Gregori, G.
    Irsig, R.
    Laarmann, T.
    Lee, H. J.
    Li, B.
    Meiwes-Broer, K-H
    Mithen, J.
    Nagler, B.
    Przystawik, A.
    Radcliffe, P.
    Redlin, H.
    Redmer, R.
    Reinholz, H.
    Roepke, G.
    Tavella, F.
    Thiele, R.
    Tiggesbaeumker, J.
    Uschmann, I.
    Vinko, S. M.
    Whitcher, T.
    Zastrau, U.
    Ziaja, B.
    Tschentscher, T.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (19)
  • [50] Concept to diagnose mix with imaging x-ray Thomson scattering
    Keiter, Paul A.
    Gamboa, Eliseo J.
    Huntington, Channing M.
    Kuranz, Carolyn C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):