BOUNDING SECTIONAL CURVATURE ALONG THE KAHLER-RICCI FLOW
被引:6
|
作者:
Ruan, Wei-Dong
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South KoreaKorea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
Ruan, Wei-Dong
[1
]
Zhang, Yuguang
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
Capital Normal Univ, Dept Math, Beijing, Peoples R ChinaKorea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
Zhang, Yuguang
[1
,2
]
Zhang, Zhenlei
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Dept Math, Beijing, Peoples R ChinaKorea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
Zhang, Zhenlei
[2
]
机构:
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[2] Capital Normal Univ, Dept Math, Beijing, Peoples R China
If a normalized Kahler-Ricci flow g(t), t is an element of [0,infinity), on a compact Kahler manifold M, dim(C) M = n >= 3, with positive first Chern class satisfies g(t) is an element of 2 pi c(1)(M) and has curvature operator uniformly bounded in L-n-norm, the curvature operator will also be uniformly bounded along the flow. Consequently, the flow will converge along a subsequence to a Kahler-Ricci soliton.
机构:
Univ British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Chau, Albert
Lee, Man-Chun
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Room 121,1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
机构:
Beijing Normal Univ, Beijing, Peoples R China
Princeton Univ, Fine Hall,Washington Rd, Princeton, NJ 08544 USABeijing Normal Univ, Beijing, Peoples R China