Sub-Laplacians on Sub-Riemannian Manifolds

被引:22
|
作者
Gordina, Maria [1 ]
Laetsch, Thomas [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Sub-Riemannian manifold; Sub-Laplacian; Hypoelliptic operator; LIE-GROUPS; INEQUALITIES;
D O I
10.1007/s11118-016-9532-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider different sub-Laplacians on a sub-Riemannian manifold M. Namely, we compare different natural choices for such operators, and give conditions under which they coincide. One of these operators is a sub-Laplacian we constructed previously in Gordina and Laetsch (Trans. Amer. Math. Soc., 2015). This operator is canonical with respect to the horizontal Brownian motion; we are able to define this sub-Laplacian without some a priori choice of measure. The other operator is div(omega) grad(H) for some volume form omega on M. We illustrate our results by examples of three Lie groups equipped with a sub-Riemannian structure: SU(2), the Heisenberg group and the affine group.
引用
收藏
页码:811 / 837
页数:27
相关论文
共 50 条
  • [41] Volume and distance comparison theorems for sub-Riemannian manifolds
    Baudoin, Fabrice
    Bonnefont, Michel
    Garofalo, Nicola
    Munive, Isidro H.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2005 - 2027
  • [42] RELLICH INEQUALITIES FOR SUB-LAPLACIANS WITH DRIFT
    Ruzhansky, Michael
    Yessirkegenov, Nurgissa
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1335 - 1349
  • [43] Sub-Riemannian Geometry on Infinite-Dimensional Manifolds
    Grong, Erlend
    Markina, Irina
    Vasil'ev, Alexander
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) : 2474 - 2515
  • [44] Conformality and Q-harmonicity in sub-Riemannian manifolds
    Capogna, Luca
    Citti, Giovanna
    Le Donne, Enrico
    Ottazzi, Alessandro
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 122 : 67 - 124
  • [45] Sub-Riemannian Geometry on Infinite-Dimensional Manifolds
    Erlend Grong
    Irina Markina
    Alexander Vasil’ev
    The Journal of Geometric Analysis, 2015, 25 : 2474 - 2515
  • [46] Stochastic completeness and volume growth in sub-Riemannian manifolds
    Munive, Isidro H.
    MANUSCRIPTA MATHEMATICA, 2012, 138 (3-4) : 299 - 313
  • [47] Surface measure on, and the local geometry of, sub-Riemannian manifolds
    Sebastiano Don
    Valentino Magnani
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [48] Stochastic completeness and volume growth in sub-Riemannian manifolds
    Isidro H. Munive
    Manuscripta Mathematica, 2012, 138 : 299 - 313
  • [49] Cartan Connections for Stochastic Developments on sub-Riemannian Manifolds
    Ivan Beschastnyi
    Karen Habermann
    Alexandr Medvedev
    The Journal of Geometric Analysis, 2022, 32
  • [50] STOCHASTIC ANALYSIS ON SUB-RIEMANNIAN MANIFOLDS WITH TRANSVERSE SYMMETRIES
    Baudoin, Fabrice
    ANNALS OF PROBABILITY, 2017, 45 (01): : 56 - 81