Sub-Laplacians on Sub-Riemannian Manifolds

被引:22
|
作者
Gordina, Maria [1 ]
Laetsch, Thomas [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Sub-Riemannian manifold; Sub-Laplacian; Hypoelliptic operator; LIE-GROUPS; INEQUALITIES;
D O I
10.1007/s11118-016-9532-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider different sub-Laplacians on a sub-Riemannian manifold M. Namely, we compare different natural choices for such operators, and give conditions under which they coincide. One of these operators is a sub-Laplacian we constructed previously in Gordina and Laetsch (Trans. Amer. Math. Soc., 2015). This operator is canonical with respect to the horizontal Brownian motion; we are able to define this sub-Laplacian without some a priori choice of measure. The other operator is div(omega) grad(H) for some volume form omega on M. We illustrate our results by examples of three Lie groups equipped with a sub-Riemannian structure: SU(2), the Heisenberg group and the affine group.
引用
收藏
页码:811 / 837
页数:27
相关论文
共 50 条
  • [1] Sub-Laplacians on Sub-Riemannian Manifolds
    Maria Gordina
    Thomas Laetsch
    Potential Analysis, 2016, 44 : 811 - 837
  • [2] Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry
    Boscain, Ugo
    Neel, Robert
    Rizzi, Luca
    ADVANCES IN MATHEMATICS, 2017, 314 : 124 - 184
  • [3] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [4] Holonomy of sub-Riemannian manifolds
    Falbel, E
    Gorodski, C
    Rumin, M
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (03) : 317 - 344
  • [5] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [6] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [7] Quasiregular Mappings on Sub-Riemannian Manifolds
    Katrin Fässler
    Anton Lukyanenko
    Kirsi Peltonen
    The Journal of Geometric Analysis, 2016, 26 : 1754 - 1794
  • [8] COLLAPSING RIEMANNIAN METRICS TO CARNOT-CARATHEODORY METRICS AND LAPLACIANS TO SUB-LAPLACIANS
    GE, Z
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (03): : 537 - 553
  • [9] MASS TRANSPORTATION ON SUB-RIEMANNIAN MANIFOLDS
    Figalli, Alessio
    Rifford, Ludovic
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 124 - 159
  • [10] On isometric immersions of sub-Riemannian manifolds
    Rovenski, Vladimir
    FILOMAT, 2023, 37 (25) : 8543 - 8551