Estimation of anisotropic thermal conductivity in nanoscale confined semiconductors via lattice Boltzmann method
被引:0
|
作者:
Ghai, Sartaj S.
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
Ghai, Sartaj S.
[1
]
论文数: 引用数:
h-index:
机构:
Kim, Woo Tae
[1
]
Am, Cristina H.
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
Am, Cristina H.
[1
]
Jhon, Myung S.
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
Jhon, Myung S.
[1
]
机构:
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
来源:
Electronic and Photonic Packaging, Integration and Packaging of MICRO/NANO/Electronic Systems
|
2005年
关键词:
D O I:
暂无
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
A novel transient thermal transport model based on lattice Boltzmann method is developed to capture the sub-continuum effects including anisotropic thermal behavior of solids at nanoscale. Rigorous boundary condition treatment is incorporated via ghost boundary formulation. These subcontinuum effects deviate significantly from the bulk behavior and can not be accurately captured by the continuum based models such as Fourier equation. We observed that as the thickness of the semiconductor film is decreased to the scale of its carrier's mean free path, the thermal conductivity of the film reduces drastically from its bulk value and starts to show anisotropic behavior. In addition, a temperature jump, which does not exist at the bulk conditions, is observed at the interfaces. These sub-continuum effects are successfully captured by the lattice Boltzmann model and simple equations have been developed to accurately estimate these effects using the film geometry and properties.
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
Qu, Z. G.
Fu, Y. D.
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
Fu, Y. D.
Liu, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
Liu, Y.
Zhou, L.
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China