The LAD estimation of the change-point linear model with randomly censored data

被引:1
|
作者
Tang, Linjun [1 ]
Zhou, Zhangong [1 ]
Wu, Changchun [1 ]
机构
[1] Jiaxing Univ, Dept Stat, Jiaxing, Peoples R China
关键词
Linear model; Change-point; Random censoring; LAD; MAXIMUM-LIKELIHOOD ESTIMATOR; REGRESSION-MODEL; VARIABLE SELECTION; MEDIAN REGRESSION;
D O I
10.1080/03610926.2013.827720
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a change-point linear model with randomly censored data is investigated. We propose the least absolute deviation estimation procedure for regression and change-point parameters simultaneously. The asymptotic properties of the change-point and regression parameter estimators are obtained. We show that the resulting regression parameter estimator is asymptotically normal, and the change-point estimator converges weakly to the minimizer of a given random process. The extensive simulation studies and the analysis of an acute myocardial infarction data set are conducted to illustrate the finite sample performance of the proposed method.
引用
收藏
页码:479 / 491
页数:13
相关论文
共 50 条