Linear model;
Change-point;
Random censoring;
LAD;
MAXIMUM-LIKELIHOOD ESTIMATOR;
REGRESSION-MODEL;
VARIABLE SELECTION;
MEDIAN REGRESSION;
D O I:
10.1080/03610926.2013.827720
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper, a change-point linear model with randomly censored data is investigated. We propose the least absolute deviation estimation procedure for regression and change-point parameters simultaneously. The asymptotic properties of the change-point and regression parameter estimators are obtained. We show that the resulting regression parameter estimator is asymptotically normal, and the change-point estimator converges weakly to the minimizer of a given random process. The extensive simulation studies and the analysis of an acute myocardial infarction data set are conducted to illustrate the finite sample performance of the proposed method.
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R China
NE Normal Univ, KLAS & Sch Math & Stat, Changchun, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R China
Zhou, Xiuqing
Wang, Jinde
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210008, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R China